1. Sampaio GR, Guizellini GM, da Silva SA, de Almeida AP, Pinaffi-Langley ACC, Rogero MM, et al. Polycyclic aromatic hydrocarbons in foods: Biological effects, legislation, occurrence, analytical methods, and strategies to reduce their formation. Int J Mol Sci. 2021; 22(11): 6010. doi: 10.3390/ijms22116010. 2. Siddique R, Zahoor AF, Ahmad H, Zahid FM, Karrar E. Impact of different cooking methods on polycyclic aromatic hydrocarbons in rabbit meat. Food Sci Nutr. 2021; 9(6): 3219-27. doi:10.1002/fsn3.2284. 3. Susanto A, Yusril N, Zaini J, Nuwidya F. Comparison of serum benzo (a) pyrene diol epoxide—protein adducts level between kretek cigarette smokers and nonsmokers and the related factors. J Nat Sci Biol. Med. 2021; 12: 52. doi:10.4103/jnsbm.JNSBM_100_20 4. Bukowska B, Duchnowicz P. Molecular mechanisms of action of selected substances involved in the reduction of benzo [a] pyrene-induced oxidative stress. Molecules. 2022; 27(4): 1379. doi:10.3390/molecules27041379 5. Chakravarti D, Venugopal D, Mailander PC, Meza JL, Higginbotham S, Cavalieri EL, Rogan EG. The role of polycyclic aromatic hydrocarbon–DNA adducts in inducing mutations in mouse skin. Mutat Res. 2008; 649(1-2): 161-78. doi: 10.1016/j.mrgentox.2007.08.007. 6. Gao M, Zheng A, Chen L, Dang F, Liu X, Gao J. Benzo (a) pyrene affects proliferation with reference to metabolic genes and ROS/HIF-1α/HO-1 signaling in A549 and MCF-7 cancer cells. Drug Chem. Toxicol. 2022; 45(2): 741-9. doi: 10.1080/01480545.2020.1774602. 7. Ji K, Xing C, Jiang F, Wang X, Guo H, Nan J, et al. Benzo [a] pyrene induces oxidative stress and endothelial progenitor cell dysfunction via the activation of the NF-κB pathway. Int. J. Mol. Med. 2013; 31(4): 922-30. doi.org/10.3892/ijmm.2013.1288 8. González A, Espinoza D, Vidal C, Moenne A. Benzopyrene induces oxidative stress and increases expression and activities of antioxidant enzymes, and CYP450 and GST metabolizing enzymes in Ulva lactuca (Chlorophyta). Planta. 2020; 252: 1-13. doi: 10.1007/s00425-020-03508-w. 9. Guterres ZR, de Senes Lopes TF, de Queiróz DF, da Silva LMGE, Migliolo L. Study of the modulator effect of oil chia (Salvia hispanica L.) associated with benzo (a) pyrene and doxorubicin hydrochloride. Res. Soc. Dev. 2022; 11(4): e23611427254-e. doi.org/10.33448/rsd-v11i4.27254 10. Melo D, Machado TB, Oliveira MBP. Chia seeds: An ancient grain trending in modern human diets. Food Funct. 2019; 10(6): 3068-89. doi: 10.1039/c9fo00239a. 11. da Silva BP, Toledo RCL, Grancieri M, de Castro Moreira ME, Medina NR, Silva RR, et al. Effects of chia (Salvia hispanica L.) on calcium bioavailability and inflammation in Wistar rats. Food Res. Int. 2019; 116: 592-9. doi: 10.1016/j.foodres.2018.08.078. 12. de Paula Dias Moreira L, Enes BN, de São José VP, Toledo RC, Ladeira LC, Cardoso RR, da Silva Duarte V, Hermsdorff HH, de Barros FA, Martino HS. Chia (Salvia hispanica L.) flour and oil ameliorate metabolic disorders in the liver of rats fed a high-fat and high fructose diet. Foods. 2022 Jan 21; 11(3): 285. doi.org/10.3390/foods11030285 13. Abdel-Aty AM, Elsayed AM, Salah HA, Bassuiny RI, Mohamed SA. Egyptian chia seeds (Salvia hispanica L.) during germination: Upgrading of phenolic profile, antioxidant, antibacterial properties and relevant enzymes activities. Food Sci. Biotechnol. 2021; 30: 723-34. doi: 10.1007/s10068-021-00902-2 14. Medina-Urrutia A, Lopez-Uribe AR, El Hafidi M, González-Salazar MD, Posadas-Sánchez R, Jorge-Galarza E, del Valle-Mondragón L, Juárez-Rojas JG. Chia (Salvia hispanica)-supplemented diet ameliorates non-alcoholic fatty liver disease and its metabolic abnormalities in humans. Lipids Health Dis. 2020; 19:1-9. doi: 10.1186/s12944-020-01283-x. 15. Mihafu FD, Kiage BN, Kimang’a AN, Okoth JK. Effect of chia seeds (Salvia hispanica) on postprandial glycaemia, body weight and hematological parameters in rats fed a high fat and fructose diet. Int J Biol Chem Sci 2020; 14(5): 1752-62. doi: 10.4314/ijbcs.v14i5.20 16. Chan-Zapata I, Arana-Argáez VE, Torres-Romero JC, Segura-Campos MR. Anti-inflammatory effects of the protein hydrolysate and peptide fractions isolated from Salvia hispanica L. seeds. Food Agricultural Immunol. 2019; 30(1): 786-803. doi.org/10.1080/09540105.2019.1632804 17. da Silva Marineli R, Lenquiste SA, Moraes ÉA, Maróstica Jr MR. Antioxidant potential of dietary chia seed and oil (Salvia hispanica L.) in diet-induced obese rats. Food Res Int. 2015; 76: 666-74. doi: 10.1016/j.foodres.2015.07.039. 18. Karimi Dehkordi M, Ghasemian SO. Assessment of oxidative stress indexes and BCS in clinical mastitis cows in comparison with healthy cows. Vet Clin Pathol. 2022; 16(61): 29-42. doi: 10.30495/JVCP.2022.1906232.1277 19. Karimi-Dehkordi M, Molavi Pordanjani M, Gholami-Ahangaran M, Mousavi Khaneghah A. The detoxification of cadmium in Japanese quail by pomegranate peel powder. Int J Environ Health Res. 2023: 1-11. doi: 10.1080/09603123.2023.2211547. 20. Mousavi Tashar N, Karimi Dehkordi M, Nazem M. The effect of serum catalase and superoxide dismutase activity on subclinical ketosis and conception rate at first service in Holstein dairy cows. Iran J Vet Res. 2022; 17(4): 111-20. doi: 10.22055/IVJ.2020.219105.2230 21. Karimi Dehkordi M, Salehi N, BaniMehdi P. Comparison of serum oxidative status in healthy Arabian and Dareshoor horses. Vet Clin Pathol. 2021; 15(57): 29-39. doi: 10.30495/JVCP.2021.1897033.1264 22. Rimbach G, Moehring J, Huebbe P, Lodge JK. Gene-regulatory activity of α-tocopherol. Molecules. 2010; 15(3): 1746-61. doi: 10.3390/molecules15031746 23. Topinka J, Sevastyanova O, Binkova B, Chvatalova I, Milcova A, Lnenickova Z, et al. Biomarkers of air pollution exposure—a study of policemen in Prague. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis. 2007; 624(1-2): 9-17. doi:10.1016/j.mrfmmm.2007.02.032 24. Sram R, Farmer P, Singh R, Garte S, Kalina I, Popov T, et al. Effect of vitamin levels on biomarkers of exposure and oxidative damage—the EXPAH study. Mutation research/genetic toxicology and environmental mutagenesis. 2009; 672(2): 129-34. doi: 10.1016/j.mrgentox.2008.11.005. 25. da Silva BP, Toledo RCL, Grancieri M, de Castro Moreira ME, Medina NR, Silva RR, et al. Effects of chia (Salvia hispanica L.) on calcium bioavailability and inflammation in Wistar rats. Food Res Int. 2019; 116: 592-9. doi: 10.1016/j.foodres.2018.08.078. 26. Çelik S, Baysal B, Şen S. Resveratrol attenuates benzo (a) pyrene-induced dysfunctions, oxidative stress and apoptosis in pancreatic beta-cells. Adv Biosci Biotechnol. 2019; 10(11): 389-404. doi.org/10.4236/abb.2019.1011029 27. Sargi SC, Silva BC, Santos HMC, Montanher PF, Boeing JS, Santos Júnior OO, et al. Antioxidant capacity and chemical composition in seeds rich in omega-3: chia, flax, and perilla. Food Sci. Technol. 2013; 33: 541-8. doi: 10.1590/S0101-20612013005000057 28. Patrignani F, Prasad S, Novakovic M, Marin PD, Bukvicki D. Lamiaceae in the treatment of cardiovascular diseases. Front Biosci. 2021; 26(4): 612-43. doi: 10.2741/4909. 29. Jiménez-Rojas MI, Vázquez-Euán R, Magaña-Sevilla H, Azcorra Perera GdJ, Rodríguez Canul R, Zamora-Bustillos R. Chia (Salvia hispanica) harvest residue induces cytokine expression in rabbits. Ecosistemas y recursos agropecuarios 2018; 5(13): 35-43. doi: 10.19136/era.a5n13.1377 30. da Silva BP, Toledo RC, Mishima MD, de Castro Moreira ME, Vasconcelos CM, Pereira CE, et al. Effects of chia (Salvia hispanica L.) on oxidative stress and inflammation in ovariectomized adult female Wistar rats. Food Funct. 2019; 10(7): 4036-45. doi.org/10.1039/C9FO00862D 31. Joubert MB, Ingaramo P, Oliva ME, D'Alessandro ME. Salvia hispanica L. (chia) seed ameliorates liver injury and oxidative stress by modulating NrF2 and NFκB expression in sucrose-rich diet-fed rats. FOOD FUNCT. 2022; 13(13):7333-45. doi.org/10.1039/D2FO00642A
|