[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Indexing Sources::
Guide for Authors::
Online Submission::
Ethics::
Articles archive::
For Reviewers::
Contact us::
::
Biochemistry and Nutrition in Metabolic Diseases
..
DOAJ
..
CINAHL
..
EBSCO
..
IMEMR
..
ISC
..
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
enamad
..
:: Volume 28, Issue 3 (August-September 2024) ::
Feyz Med Sci J 2024, 28(3): 317-323 Back to browse issues page
Comparison of the simultaneous treatment effects of sorafenib and sunitinib on viability and migration of breast (MDA-MB-231) and pancreatic (Panc1) cancer cell lines
Seyedeh Fatemeh Soghrati Salek Moalemi , Fatemeh Safari *
Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran , fsafari@guilan.ac.ir
Abstract:   (321 Views)
Background and Aim: Sorafenib and sunitinib are tyrosine kinase receptor inhibitors commonly used in chemotherapy. This study aimed to compare the effects of simultaneous treatment with these two anti-tumor drugs on breast (MDA-MB-231) and pancreatic (Panc1) cancer cell lines.
Methods: In this experimental study, breast cancer (MDA-MB-231) and pancreatic cancer (Panc1) cell lines were cultured. The cells were then treated simultaneously with sorafenib and sunitinib for 48 hours. Cell viability was assessed using the MTT assay, while cell migration was evaluated using the Scratch assay.
Results: The IC50 values for both anticancer drugs, sorafenib and sunitinib, were higher in the pancreatic cell line (Panc1) compared to the breast cell line (MDA-MB-231). The simultaneous treatment with these two drugs was more effective in reducing the viability and migration of breast cancer cells (MDA-MB-231) than in pancreatic cancer cells (Panc1). Furthermore, morphological changes indicative of cancer cell damage were observed more frequently in the breast cell line (MDA-MB-231) following simultaneous treatment with both drugs.
Conclusion: The simultaneous treatment with the tyrosine kinase receptor inhibitors sorafenib and sunitinib was more effective in inhibiting the viability and migration of breast cancer cells (MDA-MB-231). This increased effectiveness may be attributed to the higher expression of tyrosine kinase receptors in breast cancer. However, further experiments are necessary to elucidate the molecular mechanisms underlying these effects.
Keywords: Antitumor properties, Sorafenib, Sunitinib, Breast Cancer (MDA-MB-231), Pancreatic Cancer Cells (Panc1)
Full-Text [PDF 491 kb]   (82 Downloads)    
Type of Study: Research | Subject: General
Received: 2024/04/4 | Revised: 2024/09/9 | Accepted: 2024/07/24 | Published: 2024/08/31
References
1. Hassan MSU, Ansari J, Spooner D, Hussain SA. Chemotherapy for breast cancer (Review). Oncol. Rep 2010; 24(5): 1121–31. doi: 10.3892/or_00000963 PMID: 20878101.
2. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018; 68(6): 394–424. doi: 10.3322/caac.21492 PMID: 30207593.
3. Motzer RJ, Hutson TE, Tomczak P, Michaelson MD, Bukowski RM, Oudard S, et al. Overall survival and updated results for sunitinib compared with interferon alfa in patients with metastatic renal cell carcinoma. J Clin Oncol 2009; 27: 3584–90. doi: 10.1200/JCO.2008.20.1293. doi: 10.1200/JCO.2008.20.1293 PMID: 19487381.
4. Greidelli C, Maione P, Del Gaizo F, Colantunoni G, Guerriero C, Ferrara C, et al. Sorafinib and sunitinib in the treatment of advanced non-small cell lung cancer. Oncologist 2007; 12(2): 191-200. doi: 10.1634/theoncologist.12-2-191 PMID: 17296815.
5. Pouyssegur J, Dayan F, Mazure NM. Hypoxia signalling in cancer and approaches to enforce tumour regression. Nature 2006; 441: 437-43. doi: 10.1038/nature04871 PMID: 16724055.
6. Brugarolas J. Renal-cell carcinoma: Molecular pathways and therapies. NEngl J Med 2007; 356:185-7. doi: 10.1056/NEJMe068263 PMID: 17215538.
7. Cai W, Kong W, Dong B, Zhang J, Chen Y, Xue W, et al. Comparison of efficacy, safety, and quality of life between sorafenib and sunitinib as firstline therapy for Chinese patients with metastatic renal cell carcinoma. Chin J Cancer 2017; 36:64. doi: 10.1186/s40880-017-0230-7 PMID: 28789709.
8. Di Fiore F, Rigal O, Ménager C, Michel P, Pfister C. Severe clinical toxicities are correlated with survival in patients with advanced renal cell carcinoma treated with sunitinib and sorafenib. Br J Cancer 2011; 105:1811–3. doi: 10.1038/bjc.2011.507 PMID: 22095228.
9. Grandinetti CA, Goldspiel BR. Sorafenib and sunitinib: Novel targeted therapies for renal cell cancer. Pharmacotherapy 2007; 27: 1125–44. doi: 10.1592/phco.27.8.1125 PMID: 17655513.
10. Deng H, Liu W, He T, Hong Z, Yi F, Wei Y and Zhang W. Comparative Efficacy, Safety, and Costs of Sorafenib vs. Sunitinib as First-Line Therapy for Metastatic Renal Cell Carcinoma: A Systematic Review and Meta-Analysis. Front. Oncol 2019; 9:479. doi: 10.3389/fonc.2019.00479 PMID: 31293962.
11. Keating GM, Santoro A. Sorafenib: A review of its use in advanced hepatocellular carcinoma. Drugs 2009; 69: 223–40. doi: 10.2165/00003495-200969020-00006 PMID: 19228077.
12. Deeks ED, Keating GM. Sunitinib. Drugs 2006; 66: 2255–2266; discussion 2267–68. doi: 10.2165/00003495-200666170-00007 PMID: 17137406.
13. Sousa Santos F, Joana Santos R, Leite V. Sorafenib and Sunitinib for the Treatment of Metastatic Thyroid Cancer of Follicular Origin: A 7-Year Single-Centre Experience. Eur Thyroid J 2019; 8: 262–7. doi: 10.1159/000501680 PMID: 31768337.
14. Wilhelm SM, Carter C, Tang L, Wilkie D, McNabola A, Rong H, et al. BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/ MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res 2004; 64: 7099-7109. doi: 10.1158/0008-5472.CAN-04-1443 PMID: 15466206.
15. Sharma A, Trivedi NR, Zimmerman MA, Tuveson DA, Smith CD, Robertson GP: Mutant V599 EB-Raf regulates growth and vascular development of malignant melanoma tumors. Cancer Res 2005; 65: 2412-2421. doi: 10.1158/0008-5472.CAN-04-2423 PMID: 15781657.
16. Shakery T, Safari F. Downregulation of Pinkbar/pAKT and MMP2/MMP9 expression in MDA-MB-231 breast Cancer cells as potential targets in Cancer Therapy by hAMSCs Secretome. Cells Tissues Organs 2023; 212(2): 155–63. doi: 10.1159/000520370 PMID: 34695828.
17. Alidoust Saharkhiz Lahiji M, Safari F. Potential therapeutic effects of hAMSCs secretome on Panc1 pancreatic cancer cells through downregulation of SgK269, E-cadherin, vimentin, and snail expression. Biologicals 2022;76:24–30. doi: 10.1016/j.biologicals.2022.02.001 PMID: 35216916.
18. Safari F, Shafiee Nejad N, Aghaei NA. The inhibition of Panc1 cancer cells invasion by hAMSCs secretome through suppression of tyrosine phosphorylation of SGK223 (at Y411 site), c-Src (at Y416, Y530 sites), AKT activity, and JAK1/Stat3 signaling. Med Oncol 2022;39:28. doi: 10.1007/s12032-022-01649-4 PMID: 35059869.
19. Gschwind A, Fischer OM, Ullrich A. The discovery of receptor tyrosine kinases: targets for cancer therapy. Nat.Rev.Cancer 2004; 4: 361–70. doi: 10.1038/nrc1360 PMID: 15122207.
20. Zafrakas M, Papasozomenou P, Emmanouilides C. Sorafenib in breast cancer treatment: a systematic review and overview of clinical trials. World J Clin Oncol 2016; 7(4): 331–6. doi: 10.5306/wjco.v7.i4.331 PMID: 27579253.
21. Dattachoudhury S, Sharma R, Kumar A, Jaganathan BG. Sorafenib Inhibits Proliferation, Migration and Invasion of Breast Cancer Cells. Oncology 2020; 98 (7): 478-86. doi: 10.1159/000505521 PMID: 32434184.
22. Murray LJ, Abrams TJ, Long KR, Ngai TJ, Olson LM, Hong W, et al. SU11248 inhibits tumor growth and CSF-1R-dependent osteolysis in an experimental breast cancer bone metastasis model. Clin Exp Metastas 2003; 20: 757-766. doi: 10.1023/:clin.0000006873.65590.68 PMID: 14713109.
23. Abrams TJ, Murray LJ, Pesenti E, Holway VW, Colombo T, Lee LB, et al. Preclinical evaluation of the tyrosine kinase inhibitor SU11248 as a single agent and in combination with “standard of care” therapeutic agents for the treatment of breast cancer. Mol Cancer Ther 2003; 2: 1011-21.
24. Stalker L, Pemberton J, Moorehead RA. Inhibition of proliferation and migration of luminal and claudin-low breast cancer cells by PDGFR inhibitors. Cancer Cell Int 2014; 14: 89. doi: 10.1186/s12935-014-0089-5 PMID: 25253994.
25. Korashy HM, Belali OM, Ansar MA, Alharbi NO. M. FoxO3a is Essential for the Antiproliferative and Apoptogenic Effects of Sunitinib in MDA-MB231 Cell Line. Anticancer Res 2016; 36: 6097-108. doi: 10.21873/anticanres.11200 PMID: 27793938.
26. Ha TY, Hwang S, Moon KM, Won YJ, Song GW, Kim N, et al. Sorafenib inhibits migration and invasion of hepatocellular carcinoma cells through suppression of matrix metalloproteinase expression. Anticancer Res 2015; 35(4): 1967–76.
27. Yoshida M, Yamashita T, Okada H, Oishi N, Nio K, Hayashi T, et al. Sorafenib suppresses extrahepatic metastasis de novo in hepatocellular carcinoma through inhibition of mesenchymal cancer stem cells characterized by the expression of CD90. Sci Rep 2017; 12; 7(1): 11292. doi: 10.1038/s41598-017-11848-z PMID: 28900199.
28. Lee JH, Shim JW, Choi YJ, Heo K, Yang K. The combination of sorafenib and radiation preferentially inhibits breast cancer stem cells by suppressing HIF-1α expression. Oncology Reports 2013; 29: 917-924. doi: 10.3892/or.2013.2228 PMID: 23314174.
29. Huang L, Hu C, Di Benedetto M, Varin R, Liu J, Wang L, et al. Induction of multiple drug resistance in HMEC1 endothelial cells after long-term exposure to Sunitinib. OncoTargets Ther 2014; 7:2249-55. doi: 10.2147/OTT.S67251 PMID: 25587220.
30. Jayson GC, Kerbel R, Ellis LM, Harris AL. Antiangiogenic therapy in oncology: current status and future directions. Lancet 2016; 388(10043):518-29. doi: 10.1016/S0140-6736(15)01088-0 PMID: 26853587.
31. Yazdi MH, Faramarzi MA, Nikfar S, Abdollahi M. Comparative safety and efficacy of tyrosine kinase inhibitors (TKIs) in the treatment setting of different types of leukemia, and different types of adenocarcinoma. Biomed Pharmacother 2017;95:1556-64. doi: 10.1016/j.biopha.2017.09.088 PMID: 28950655.
32. Anreddy N, Gupta P, Kathawala R, Patel A, Wurpel J, Chen Z-S. Tyrosine kinase inhibitors as reversal agents for ABC transporter mediated drug resistance. Molecules 2014; 19(9):13848-77. doi: 10.3390/molecules190913848 PMID: 25191874.
33. Zhang R, Huang L, Pan D, Zhang W. Sunitinib induced resistance of endothelial cells by up-regulating P-glycoprotein and PI3K/Akt pathway. Braz. J. Pharm. Sci 2022; 58: e191102. doi.org/10.1590/s2175-97902022e191102.
34. Grapa CM, Mocan T, Gonclar D, Zdrehus C, Mosteanu O, Pop T, et al. Epidermal growth factor receptor and its role in pancreatic cancer treatment mediated by nanoparticles. Int J Nanomedicine 2019; 14: 9693-9706. doi: 10.2147/IJN.S226628 PMID: 31849462.
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Soghrati Salek Moalemi S F, Safari F. Comparison of the simultaneous treatment effects of sorafenib and sunitinib on viability and migration of breast (MDA-MB-231) and pancreatic (Panc1) cancer cell lines. Feyz Med Sci J 2024; 28 (3) :317-323
URL: http://feyz.kaums.ac.ir/article-1-5151-en.html


Creative Commons License
This open access journal is licensed under a Creative Commons Attribution-NonCommercial ۴.۰ International License. CC BY-NC ۴. Design and publishing by Kashan University of Medical Sciences.
Copyright ۲۰۲۳© Feyz Medical Sciences Journal. All rights reserved.
Volume 28, Issue 3 (August-September 2024) Back to browse issues page
مجله علوم پزشکی فیض Feyz Medical Sciences Journal
Persian site map - English site map - Created in 0.05 seconds with 46 queries by YEKTAWEB 4660