[صفحه اصلی ]   [Archive] [ English ]  
:: صفحه اصلي :: درباره نشريه :: آخرين شماره :: تمام شماره‌ها :: جستجو :: ثبت نام :: ارسال مقاله :: تماس با ما ::
:: دوره 26، شماره 4 - ( دوماه نامه 1401 ) ::
جلد 26 شماره 4 صفحات 423-416 برگشت به فهرست نسخه ها
اثر تمرین تناوبی با شدت بالا و محدودیت کالریک بر عوامل التهابی و پری‌لیپین3 بافت چرب احشایی رت‌های نر ویستار مبتلا به دیابت نوع 2
آرش علی مرادی ، حسن متین همایی* ، صالح رحمتی احمدآباد
گروه فیزیولوژی ورزشی، دانشکده تربیت بدنی و علوم ورزشی، واحد تهران مرکزی، دانشگاه آزاد اسلامی، تهران، ایران ، hasanmatinhomaee@gmail.com
چکیده:   (138 مشاهده)
سابقه و هدف: شواهد زیادی در مطالعات، درمورد ارتباط واکنش‌های التهابی با پاتوژنز و عوارض ناشی از دیابت، به‌خصوص اختلال چربی خون و آترواسکلروز موجود است. هدف از پژوهش حاضر، بررسی اثر تمرین تناوبی با شدت بالا و محدودیت کالریک بر عوامل التهابی و پری‌لیپین3 بافت چرب احشایی رت‌های نر دیابتی بود.
مواد و روش‌ها: 32 سر موش صحرایی نر ویستار دیابتی به‌صورت تصادفی به سه گروه کنترل، تمرین تناوبی شدید و محدودیت کالریک تقسیم شدند. در گروه محدودیت کالریک 40 درصد از کالری دریافتی محدود شد و گروه‌های دیگر غذای استاندارد موردنیاز خود را به‌صورت آزادانه دریافت کردند. تمرین تناوبی به‌مدت هشت هفته و پنج جلسه در هفته اعمال شد. بیان نسبی پروتئین پریلیپین 3 (PLIN3) با تکنیک وسترن بلات و TNF-α و IL-6 به‌روش الایزا مورد سنجش قرار گرفت. دادهﻫﺎ ﺑﺎ ﺍﺳﺘﻔﺎﺩه ﺍﺯ ﺁﺯﻣﻮن ﺁﻣﺎری تحلیل واریانس یک‌طرفه ﻭ ﺁﺯﻣﻮﻥ تعقیبی توکیﺁﻧﺎﻟﻴﺰ ﺷﺪ.
نتایج: تفاوت معنی‌داری بین میانگین  PLIN3، IL-6 و TNF-α در سه گروه پژوهش مشاهده شد (0/001=P). نتایج آزمون تعقیبی بیانگر افزایش معنی‌دار PLIN3 و کاهش معنی‌دار IL-6 و TNF-α در گروه محدودیت کالریک و تمرین تناوبی شدید نسبت به گروه کنترل دیابتی بود (0/001=P).
نتیجه‌گیری: تمرین تناوبی شدید و محدودیت کالریک احتمالاً با افزایش بیان  PLIN3می‌توانند اکسیداسیون چربی‌ها را افزایش دهند. کاهش این عوامل در طی پژوهش حاضر با توجه به نقش  TNF-αو IL-6 در افزایش مقاومت به انسولین و دیابت نوع دو ممکن است در جلوگیری از ابتلا به این بیماری‌های متابولیکی سودمند باشد.
واژه‌های کلیدی: تناوبی شدید، محدودیت کالریک، پری‌لیپین3، IL-6
متن کامل [PDF 379 kb]   (3 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: عمومى
دریافت: 1401/2/6 | پذیرش: 1401/5/23 | انتشار: 1401/7/4
فهرست منابع
1. Mackenzie R, Maxwell N, Castle P, Brickley G, Watt P. Acute hypoxia and exercise improve insulin sensitivity (SI2*) in individuals with type 2 diabetes. Diabetes Metab Res Rev 2011; 27: 94-101.
2. Akbar S, Bellary S, Griffiths HR. Dietary antioxidant interventions in type 2 diabetes patients: a meta-analysis. British J Diab Vas Dise 2011; 11: 62-8.
3. Layne AS, Nasrallah S, South MA, Howell ME, McCurry MP, Ramsey MW, et al. Impaired muscle AMPK activation in the metabolic syndrome may attenuate improved insulin action after exercise training. J Clin Endocrinol Metab 2011; 96: 1815-26.
4. Conn VS, Koopman RJ, Ruppar TM, Phillips LJ, Mehr DR, Hafdahl AR. Insulin sensitivity following exercise interventions: systematic review and meta-analysis of outcomes among healthy adults. J Prim Care Community Health 2014; 5: 211-22.
5. Cartee GD. Roles of TBC1D1 and TBC1D4 in insulin-and exercise-stimulated glucose transport of skeletal muscle. Diabetologia 2015; 58: 19-30.
6. Shaw CS, Shepherd SO, Wagenmakers AJ, Hansen D, Dendale P, Van Loon LJ. Prolonged exercise training increases intramuscular lipid content and perilipin 2 expression in type I muscle fibers of patients with type 2 diabetes. Am J Physiol Endocrinol Metab 2012; 303: E1158-E65.
7. Paul A, Chan L, Bickel PE. The PAT family of lipid droplet proteins in heart and vascular cells. Curr Hypertens Rep 2008; 10: 461-6.
8. Bosma M, Hesselink MK, Sparks LM, Timmers S, Ferraz MJ, Mattijssen F, et al. Perilipin 2 improves insulin sensitivity in skeletal muscle despite elevated intramuscular lipid levels. Diabetes 2012; 61: 2679-90.
9. Shepherd SO, Cocks M, Tipton K, Ranasinghe AM, Barker TA, Burniston JG, et al. Sprint interval and traditional endurance training increase net intramuscular triglyceride breakdown and expression of perilipin 2 and 5. J Physiol 2013; 591: 657-75.
10. Pourteymour S, Lee S, Langleite TM, Eckardt K, Hjorth M, Bindesbøll C, et al. Perilipin 4 in human skeletal muscle: localization and effect of physical activity. Physiol Rep 2015; 3: e12481.
11. Shepherd SO, Cocks M, Tipton K, Ranasinghe AM, Barker TA, Burniston JG, et al. Preferential utilization of perilipin 2‐associated intramuscular triglycerides during 1 h of moderate‐intensity endurance‐type exercise. Exp Physiol 2012; 97: 970-80.
12. Songstad NT, Kaspersen K-HF, Hafstad AD, Basnet P, Ytrehus K, Acharya G. Effects of high intensity interval training on pregnant rats, and the placenta, heart and liver of their fetuses. PloS One 2015; 10: e0143095.
13. Kim DH, Kim SH, Kim WH, Moon CR. The effects of treadmill exercise on expression of UCP-2 of brown adipose tissue and TNF-α of soleus muscle in obese Zucker rats. J Clin Endocrinol Metab 2013; 17: 199.
14. Kim ES, Im JA, Kim KC, Park JH, Suh SH, Kang ES, et al. Improved insulin sensitivity and adiponectin level after exercise training in obese Korean youth. Obesity 2007; 15: 3023-30.
15. Sztalryd C, Kimmel AR. Perilipins: lipid droplet coat proteins adapted for tissue-specific energy storage and utilization, and lipid cytoprotection. Biochimie 2014; 96: 96-101.
16. Van Aggel-Leijssen DP, Saris WH, Wagenmakers AJ, Senden JM, Van Baak MA. Effect of exercise training at different intensities on fat metabolism of obese men. J Appl Physiol 2002; 92(3):1300-9.
17. Louche K, Badin PM, Montastier E, Laurens C, Bourlier V, de Glisezinski I, et al. Endurance exercise training up-regulates lipolytic proteins and reduces triglyceride content in skeletal muscle of obese subjects. J Clin Endocrinol Metab 2013; 98: 4863-71.
18. MacPherson RE, Herbst EA, Reynolds EJ, Vandenboom R, Roy BD, Peters SJ. Subcellular localization of skeletal muscle lipid droplets and PLIN family proteins OXPAT and ADRP at rest and following contraction in rat soleus muscle. A Am J Physiol Regul Integr Comp Physiol 2012; 302: R29-R36.
19. Pruchnic R, Katsiaras A, He J, Kelley DE, Winters C, Goodpaster BH. Exercise training increases intramyocellular lipid and oxidative capacity in older adults. Am J Physiol Endocrinol Metab 2004; 287: E857-E62.
20. Gallardo-Montejano VI, Saxena G, Kusminski CM, Yang C, McAfee JL, Hahner L, et al. Nuclear Perilipin 5 integrates lipid droplet lipolysis with PGC-1α/SIRT1-dependent transcriptional regulation of mitochondrial function. Nat Commun 2016; 7: 1-14.
21. Liu Y, Ni Y, Zhang W, Sun YE, Ma Z, Gu X. Antinociceptive effects of caloric restriction on post-incisional pain in nonobese rats. Sci Rep 2017; 7: 1-11.
22. Collins-Hooper H, Sartori R, Macharia R, Visanuvimol K, Foster K, Matsakas A, et al. Propeptide-mediated inhibition of myostatin increases muscle mass through inhibiting proteolytic pathways in aged mice. J Gerontol A Biol Sci Med Sci 2014; 69: 1049-59.
23. Pervaiz N, Hoffman-Goetz L. Immune cell inflammatory cytokine responses differ between central and systemic compartments in response to acute exercise in mice. Exerc Immunol Rev 2012; 18: 142-57.
24. Mann S, Beedie C, Balducci S, Zanuso S, Allgrove J, Bertiato F, et al. Changes in insulin sensitivity in response to different modalities of exercise: a review of the evidence. Diabetes Metab Res Rev 2014; 30: 257-68.
25. Kuramoto K, Sakai F, Yoshinori N, Nakamura TY, Wakabayashi S, Kojidani T, et al. Deficiency of a lipid droplet protein, perilipin 5, suppresses myocardial lipid accumulation, thereby preventing type 1 diabetes-induced heart malfunction. Mol Cell Biol 2014; 34: 2721-31.
26. Sishi B, Loos B, Ellis B, Smith W, du Toit EF, Engelbrecht AM. Diet‐induced obesity alters signalling pathways and induces atrophy and apoptosis in skeletal muscle in a prediabetic rat model. Exp Physiol 2011; 96: 179-93.
27. Minnaard R, Schrauwen P, Schaart G, Jorgensen JA, Lenaers E, Mensink M, et al. Adipocyte differentiation-related protein and OXPAT in rat and human skeletal muscle: involvement in lipid accumulation and type 2 diabetes mellitus. J Clin Endocrinol Metab 2009; 94: 4077-85.
28. Stuart CA, South MA, Lee ML, McCurry MP, Howell ME, Ramsey MW, et al. Insulin responsiveness in metabolic syndrome after eight weeks of cycle training. Med Sci Sports Exerc 2013; 45: 2021.
29. Peters SJ, Samjoo IA, Devries MC, Stevic I, Robertshaw HA, Tarnopolsky MA. Perilipin family (PLIN) proteins in human skeletal muscle: the effect of sex, obesity, and endurance training. Appl Physiol Nutr Metab 2012; 37: 724-35.
30. van Loon LJ, Koopman R, Stegen JH, Wagenmakers AJ, Keizer HA, Saris WH. Intramyocellular lipids form an important substrate source during moderate intensity exercise in endurance‐trained males in a fasted state. J Physiol 2003; 553: 611-25.
31. Dubé JJ, Amati F, Stefanovic-Racic M, Toledo FG, Sauers SE, Goodpaster BH. Exercise-induced alterations in intramyocellular lipids and insulin resistance: the athlete's paradox revisited. Am J Physiol Endocrinol Metab 2008; 294: E882-E8.
ارسال پیام به نویسنده مسئول

ارسال نظر درباره این مقاله
نام کاربری یا پست الکترونیک شما:

CAPTCHA


XML   English Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Alimoradi A, Mateen Homaie H, Rahmati S. The effect of high intensity interval training and caloric restriction on inflammatory factors and periplipin3 visceral adipose tissue in male Wistar rats with type 2 diabetes. Feyz. 2022; 26 (4) :416-423
URL: http://feyz.kaums.ac.ir/article-1-4599-fa.html

علی مرادی آرش، متین همایی حسن، رحمتی احمدآباد صالح. اثر تمرین تناوبی با شدت بالا و محدودیت کالریک بر عوامل التهابی و پری‌لیپین3 بافت چرب احشایی رت‌های نر ویستار مبتلا به دیابت نوع 2. دوماه نامه علمي ـ پژوهشي فيض. 1401; 26 (4) :423-416

URL: http://feyz.kaums.ac.ir/article-1-4599-fa.html



بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.
دوره 26، شماره 4 - ( دوماه نامه 1401 ) برگشت به فهرست نسخه ها
مجله علمی پژوهشی فیض ::: دانشگاه علوم پزشکی کاشان KAUMS Journal ( FEYZ )
Persian site map - English site map - Created in 0.04 seconds with 30 queries by YEKTAWEB 4457