[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Indexing Sources::
Guide for Authors::
Online Submission::
Ethics::
Articles archive::
For Reviewers::
Contact us::
AI::
::
Basic and Clinical Biochemistry and Nutrition
..
DOAJ
..
CINAHL
..
EBSCO
..
IMEMR
..
ISC
..
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
enamad
..
:: Volume 29, Issue 6 (Bimonthly 2025) ::
Feyz Med Sci J 2025, 29(6): 552-566 Back to browse issues page
Assessment of HIF1α gene expression and function in gastric cancer using in silico approaches
Marziye Amini-Ghahfarokhi , Maryam Kalantari-Dehaghi , Modjtaba Emadi-Baygi *
Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran & Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran , emadi-m@sku.ac.ir
Abstract:   (721 Views)
Background and Aim: Hypoxia-Inducible Factor 1 Alpha (HIF1α) is a heterodimeric transcription factor activated under hypoxic conditions, regulating the expression of genes involved in cellular adaptation. HIF1 plays a key role in modulating hypoxia response pathways, angiogenesis, epithelial-mesenchymal transition (EMT), and metastasis. This study aimed to evaluate the role of HIF1α in invasion, EMT, and prognosis in patients with gastric cancer.
Methods: In this retrospective computational cohort study, gene expression and clinical data from gastric cancer patients were obtained from The Cancer Genome Atlas (TCGA) database. Patients were stratified into high and low HIF1A expression groups based on gene expression levels. Differential gene expression analysis was performed using the limma package. Survival analysis was conducted using the Kaplan–Meier method and univariate/multivariate Cox regression. Weighted Gene Co-expression Network Analysis (WGCNA) was employed to identify gene modules associated with HIF1A expression. Functional pathway enrichment analysis was performed using enrichR. Additionally, predictive performance was assessed using Receiver Operating Characteristic (ROC) curves and nomograms constructed based on HIF1A expression and clinical variables.
Results: A total of 15,060 differentially expressed genes were identified between the high and low HIF1A expression groups. Among invasion- and metastasis-related genes, 10 genes, including CD44, COL1A1, SLC12A3, and NT5E, showed significant associations with patient survival. The blue module identified by WGCNA exhibited the strongest correlation with HIF1A expression and was enriched in pathways such as cytokine signaling, immune responses, VEGF regulation, and extracellular matrix organization. Survival analysis revealed that patients with high HIF1A expression had shorter overall survival. The predictive models based on nomograms demonstrated high accuracy in predicting 3- and 5-year survival outcomes.
Conclusion: The findings indicate that HIF1α not only contributes to gastric cancer progression through the regulation of EMT, angiogenesis, and inflammation pathways but also serves as an independent molecular marker with strong prognostic value. Therefore, HIF1α may be regarded both as a prognostic biomarker and a promising therapeutic target for personalized treatment strategies in gastric cancer.
Keywords: Gastric cancer, HIF1α, Hypoxia, Epithelial-mesenchymal transition (EMT), Survival analysis
     
Type of Study: Research | Subject: General
Received: 2025/07/18 | Revised: 2025/12/29 | Accepted: 2025/10/25 | Published: 2025/12/30
References
1. Morgan E, Arnold M, Camargo MC, Gini A, Kunzmann AT, Matsuda T, et al. The current and future incidence and mortality of gastric cancer in 185 countries, 2020-40: A population-based modelling study. EClinicalMedicine. 2022; 47. doi.10.1016/j.eclinm.2022.101404 PMid:35497064 PMCid:PMC9046108
2. Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2024; 74(3): 229-63. doi.10.3322/caac.21834 PMid:38572751
3. Mocan L. Surgical Management of Gastric Cancer: A Systematic Review. J Clin Med. 2021; 10(12): 2557. doi.10.3390/jcm10122557 PMid:34207898 PMCid:PMC8227314
4. Cancer Genome Atlas Research Network. Comprehensive molecular characterization of gastric adenocarcinoma. Nature. 2014; 513(7517): 202-9. doi.10.1038/nature13480 PMid:25079317 PMCid:PMC4170219
5. Bardakçi M, Ergun Y. Immunotherapy in gastric cancer with liver metastasis: Challenges and opportunities. World J Gastrointest Surg. 2024; 16(6): 1513-6. doi.10.4240/wjgs.v16.i6.1513 PMid:38983315 PMCid:PMC11230037
6. Guan WL, He Y, Xu RH. Gastric cancer treatment: recent progress and future perspectives. J Hematol Oncol. 2023; 16(1):57. doi.10.1186/s13045-023-01451-3 PMid:37245017 PMCid:PMC10225110
7. Qian CN, Mei Y, Zhang J. Cancer metastasis: issues and challenges. Chin J Cancer. 2017; 36(1): 38. doi.10.1186/s40880-017-0206-7 PMid:28372569 PMCid:PMC5379757
8. Lee WC, Kopetz S, Wistuba II, Zhang J. Metastasis of cancer: when and how? Ann Oncol. 2017; 28(9): 2045-7. doi.10.1093/annonc/mdx327 PMid:28911075
9. López MJ, Carbajal J, Alfaro AL, Saravia LG, Zanabria D, Araujo JM, et al. Characteristics of gastric cancer around the world. Crit Rev Oncol Hematol. 2023; 181: 103841. doi.10.1016/j.critrevonc.2022.103841 PMid:36240980
10. Bast RCJ, Croe CM, Hait WN, Hong WK, Kufe DW, Piccart-Gebhart M, et al. Holland-Frei Cancer Medicine. Somerset: John Wiley & Sons, Incorporated; 2017. doi.10.1002/9781119000822
11. Meirson T, Gil-Henn H, Samson AO. Invasion and metastasis: the elusive hallmark of cancer. Oncogene. 2020; 39(9): 2024-6. doi.10.1038/s41388-019-1110-1 PMid:31745295
12. Singh M, Yelle N, Venugopal C, Singh SK. EMT: Mechanisms and therapeutic implications. Pharmacol Ther. 2018;182:80-94. doi.10.1016/j.pharmthera.2017.08.009PMid:28834698
13. Huang Y, Hong W, Wei X. The molecular mechanisms and therapeutic strategies of EMT in tumor progression and metastasis. J Hematol Oncol. 2022; 15(1): 129. doi.10.1186/s13045-022-01347-8 PMid:36076302 PMCid:PMC9461252
14. Gao T, Li J zhi, Lu Y, Zhang C ying, Li Q, Mao J, et al. The mechanism between epithelial mesenchymal transition in breast cancer and hypoxia microenvironment. Biomed Pharmacother. 2016; 80: 393-405. doi.10.1016/j.biopha.2016.02.044 PMid:27133080
15. Shi R, Liao C, Zhang Q. Hypoxia-Driven Effects in Cancer: Characterization, Mechanisms, and Therapeutic Implications. Cells. 2021; 10(3):678. doi.10.3390/cells10030678 PMid:33808542 PMCid:PMC8003323
16. Zhang Y, Yapryntseva MA, Vdovin A, Maximchik P, Zhivotovsky B, Gogvadze V. Modeling hypoxia facilitates cancer cell survival through downregulation of p53 expression. Chem Biol Interact. 2021;345:109553. doi.10.1016/j.cbi.2021.109553 PMid:34126102
17. Nowak E, Bednarek I. Aspects of the Epigenetic Regulation of EMT Related to Cancer Metastasis. Cells. 2021;10(12):3435. doi.10.3390/cells10123435 PMid:34943943 PMCid:PMC8700111
18. Wigerup C, Påhlman S, Bexell D. Therapeutic targeting of hypoxia and hypoxia-inducible factors in cancer. Pharmacol Ther. 2016;164:152-69. doi.10.1016/j.pharmthera.2016.04.009 PMid:27139518
19. Liberzon A, Birger C, Thorvaldsdóttir H, Ghandi M, Mesirov JP, Tamayo P. The Molecular Signatures Database Hallmark Gene Set Collection. Cell Syst. 2015;1(6):417-25. doi.10.1016/j.cels.2015.12.004 PMid:26771021 PMCid:PMC4707969
20. Frontiers CHG: A Systematically Integrated Database of Cancer Hallmark Genes [Internet]. [cited 2025 June 5].
21. COSMIC: the Catalogue of Somatic Mutations in Cancer Nucleic Acids Research Oxford Academic [Internet]. [cited 2025 June 5].
22. Stelzer G, Rosen N, Plaschkes I, Zimmerman S, Twik M, Fishilevich S, et al. The GeneCards Suite: From Gene Data Mining to Disease Genome Sequence Analyses. Curr Protoc Bioinforma. 2016; 54(1). doi.10.1002/cpbi.5 PMid:27322403
23. Yuan H, Yan M, Zhang G, Liu W, Deng C, Liao G, et al. CancerSEA: a cancer single-cell state atlas. Nucleic Acids Res. 2019; 47(D1): D900-8. doi.10.1093/nar/gky939 PMid:30329142 PMCid:PMC6324047
24. 24. Tong F, Xu L, Xu S, Zhang M. Identification of an autophagy-related 12-lncRNA signature and evaluation of NFYC-AS1 as a pro-cancer factor in lung adenocarcinoma. Front Genet. 2022;13. doi.10.3389/fgene.2022.834935 PMid:36105077 PMCid:PMC9466988
25. DiLeo MV, Strahan GD, Bakker M den, Hoekenga OA. Weighted Correlation Network Analysis (WGCNA) Applied to the Tomato Fruit Metabolome. PLOS ONE. 2011;6(10):e26683. doi.10.1371/journal.pone.0026683 PMid:22039529 PMCid:PMC3198806
26. Hou W, Kong L, Hou Z, Ji H. CD44 is a prognostic biomarker and correlated with immune infiltrates in gastric cancer. BMC Med Genomics. 2022;15(1):225. doi.10.1186/s12920-022-01383-w PMid:36316684 PMCid:PMC9620622
27. Liang G, Li S, Du W, Ke Q, Cai J, Yang J. Hypoxia regulates CD44 expression via hypoxia-inducible factor-1α in human gastric cancer cells. Oncol Lett. 2017;13(2):967-72. doi.10.3892/ol.2016.5473 PMid:28356986 PMCid:PMC5351347
28. HIF1A Overexpression Is Associated with Poor Prognosis in a Cohort of 731 Colorectal Cancers. Am J Pathol. 2010; 176(5): 2292-301. doi.10.2353/ajpath.2010.090972 PMid:20363910 PMCid:PMC2861094
29. Braicu EI, Luketina H, Richter R, Cacsire Castillo-Tong D, Lambrechts S, Mahner S, et al. HIF1α is an independent prognostic factor for overall survival in advanced primary epithelial ovarian cancer - a study of the OVCAD Consortium. OncoTargets Ther. 2014;7: 1563-9. doi.10.2147/OTT.S65373 PMid:25246800 PMCid:PMC4166345
30. Chen J, Fu Y, Hu J, He J. Hypoxia-related gene signature for predicting LUAD patients' prognosis and immune microenvironment. Cytokine. 2022; 152: 155820. doi.10.1016/j.cyto.2022.155820 PMid:35176657
31. Sun Y, Li Y, Wu J, Tian H, Liu H, Fang Y, et al. Nomograms for prediction of overall and cancer-specific survival in young breast cancer. Breast Cancer Res Treat. 2020;184(2):597-613. doi.10.1007/s10549-020-05870-5 PMid:32886273
32. Liang W, Zhang L, Jiang G, Wang Q, Liu L, Liu D, et al. Development and Validation of a Nomogram for Predicting Survival in Patients With Resected Non-Small-Cell Lung Cancer. J Clin Oncol. 2015;33(8): 861-9. doi.10.1200/JCO.2014.56.6661PMid:25624438
33. Tian H, Shi H, Yu J, Ge S, Ruan J. Biophysics Role and Biomimetic Culture Systems of ECM Stiffness in Cancer EMT. Glob Chall. 2022; 6(6): 2100094. doi.10.1002/gch2.202100094 PMid:35712024 PMCid:PMC9189138
34. Manuelli V, Pecorari C, Filomeni G, Zito E. Regulation of redox signaling in HIF-1-dependent tumor angiogenesis. FEBS J. 2022;289(18):5413-25. doi.10.1111/febs.16110 PMid:34228878
35. D'Ignazio L, Batie M, Rocha S. Hypoxia and Inflammation in Cancer, Focus on HIF and NF-κB. Biomedicines. 2017; 5(2): 21. doi.10.3390/biomedicines5020021 PMid:28536364 PMCid:PMC5489807
36. McGettrick AF, O'Neill LAJ. The Role of HIF in Immunity and Inflammation. Cell Metab. 2020; 32(4): 524-36. doi.10.1016/j.cmet.2020.08.002 PMid:32853548
37. Malkov MI, Lee CT, Taylor CT. Regulation of the Hypoxia-Inducible Factor (HIF) by Pro-Inflammatory Cytokines. Cells. 2021;10(9):2340. doi.10.3390/cells10092340 PMid:34571989 PMCid:PMC8466990
38. Tamura R, Tanaka T, Akasaki Y, Murayama Y, Yoshida K, Sasaki H. The role of vascular endothelial growth factor in the hypoxic and immunosuppressive tumor microenvironment: perspectives for therapeutic implications. Med Oncol. 2019; 37(1):2 .doi.10.1007/s12032-019-1329-2 PMid:31713115
39. Chen L, Lin G, Chen K, Liang R, Wan F, Zhang C, et al. VEGF promotes migration and invasion by regulating EMT and MMPs in nasopharyngeal carcinoma. J Cancer. 2020; 11(24): 7291-301. doi.10.7150/jca.46429 PMid:33193893 PMCid:PMC7646165
40. Hashimoto Y, Tsuzuki-Nakao T, Kida N, Matsuo Y, Maruyama T, Okada H, et al. Inflammatory Cytokine-Induced HIF-1 Activation Promotes Epithelial-Mesenchymal Transition in Endometrial Epithelial Cells. Biomedicines. 2023;11(1):210. doi.10.3390/biomedicines11010210 PMid:36672719 PMCid:PMC9855875
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Amini-Ghahfarokhi M, Kalantari-Dehaghi M, Emadi-Baygi M. Assessment of HIF1α gene expression and function in gastric cancer using in silico approaches. Feyz Med Sci J 2025; 29 (6) :552-566
URL: http://feyz.kaums.ac.ir/article-1-5374-en.html


Creative Commons License
This open access journal is licensed under a Creative Commons Attribution-NonCommercial ۴.۰ International License. CC BY-NC ۴. Design and publishing by Kashan University of Medical Sciences.
Copyright ۲۰۲۳© Feyz Medical Sciences Journal. All rights reserved.
Volume 29, Issue 6 (Bimonthly 2025) Back to browse issues page
مجله علوم پزشکی فیض Feyz Medical Sciences Journal
Persian site map - English site map - Created in 0.1 seconds with 46 queries by YEKTAWEB 4732