[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Indexing Sources::
Guide for Authors::
Online Submission::
Ethics::
Articles archive::
For Reviewers::
Contact us::
AI::
::
Basic and Clinical Biochemistry and Nutrition
..
DOAJ
..
CINAHL
..
EBSCO
..
IMEMR
..
ISC
..
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
enamad
..
:: Volume 29, Issue 3 (Bimonthly 2025) ::
Feyz Med Sci J 2025, 29(3): 266-276 Back to browse issues page
Evaluation of the effects of green-synthesized selenium nanoparticles using Onopordum acanthium extract on Reactive Oxygen Species (ROS) levels and viability of gastric cancer (AGS) cells
Avin YazdanPanah , Zohreh Alahdini , Parand Torabi Parizi , Hadis Rostami Motamed *
Department of Biology, East Tehran Branch, Islamic Azad University, Tehran, Iran , aic.intl.conferences@gmail.com
Abstract:   (283 Views)
Background and Aim: Selenium nanoparticles have garnered attention in nanomedicine due to their anticancer properties and ability to induce oxidative stress in tumor cells. However, limited studies have explored the effects of green-synthesized selenium nanoparticles on reactive oxygen species (ROS) levels in gastric cancer cells. This study aimed to evaluate the effect of green-synthesized selenium nanoparticles on ROS levels and the viability of AGS gastric cancer cells.
Methods: In this experimental study, selenium nanoparticles were synthesized using Onopordum acanthium (cotton thistle) extract via the reduction of sodium selenite. AGS cells were cultured in an appropriate medium and treated with varying concentrations of nanoparticles (15.625 to 500 µg/mL) for 24 hours. Cell viability was assessed using the MTT assay, and ROS levels were measured using the DCFH-DA probe and DHE colorimetric method via fluorometry.
Results: The selenium nanoparticles significantly reduced cell viability and increased ROS levels in AGS cells in a dose-dependent manner (P<0.001). The IC50 value of the nanoparticles was estimated to be approximately 150 µg/mL.
Conclusion: Green-synthesized selenium nanoparticles, by elevating oxidative stress and reducing the viability of gastric cancer cells, may serve as a promising and biocompatible therapeutic option for gastric cancer treatment. Further studies are necessary to confirm these findings and elucidate the underlying mechanisms.
Keywords: Selenium Nanoparticles, Green Synthesis, Gastric Cancer, Reactive Oxygen Species (ROS), Oxidative Stress
Full-Text [PDF 808 kb]   (86 Downloads)    
Type of Study: Research | Subject: General
Received: 2025/05/22 | Revised: 2025/08/19 | Accepted: 2025/07/30 | Published: 2025/08/17
References
1. Sundar R, Nakayama I, Markar SR, Shitara K, van Laarhoven HW, Janjigian YY, et al. Gastric cancer. Lancet. 2025; 405(10494):2087-102. doi.10.1016/S0140-6736(25)00052-2 PMid:40319897
2. Burz C, Pop V, Silaghi C, Lupan I, Samasca G. Prognosis and treatment of gastric cancer: a 2024 update. Cancers (Basel). 2024; 16(9):1708. doi.10.3390/cancers16091708 PMid:38730659
3. Bisht N, Phalswal P, Khanna PK. Selenium nanoparticles: A review on synthesis and biomedical applications. Mater Adv. 2022;3(3):1415-31. doi.10.1039/D1MA00639H
4. Hazrati S. Selenium Nanoparticles in Cancer Treatment: A Review of Their Antioxidant, Apoptotic, and Antitumor Effects. Int J BioLife Sci. 2024; 3(4):344.
5. Osman AI, Zhang Y, Farghali M, Rashwan AK, Eltaweil AS, Abd El-Monaem EM, et al. Synthesis of green nanoparticles for energy, biomedical, environmental, agricultural, and food applications: A review. Environ Chem Lett. 2024; 22(2):841-87. doi.10.1007/s10311-023-01682-3
6. Torabi Parizi P, Hamidzade Moghaddam S, Ahmadi R, Amini N. Synthesis of Selenium Nanoparticles Using Green Methods and their Cytotoxic Effects on Non-Cancerous Embryonic Kidney Cells. Int J BioMed Insights. 2024;1(3):56-63.
7. Nakamura H, Takada K. Reactive oxygen species in cancer: Current findings and future directions. Cancer Sci. 2021; 112(10):3945-52. doi.10.1111/cas.15068 PMid:34286881
8. Huang R, Chen H, Liang J, Li Y, Yang J, Luo C, et al. Dual role of reactive oxygen species and their application in cancer therapy. J Cancer. 2021; 12(18):5543-56. doi.10.7150/jca.54699 PMid:34405016
9. Zamani S, Ghandehari F, Fatemi M, Rezaee M. Cytotoxic effects study of nano-selenium oxide-enriched Saccharomyces boulardii on induced breast cancer cells by DMBA in rat. J Cancer Res. 2023; 15(1):25-34.
10. Shakouri A, Khosravi A, Mohammadi S, Hossini F, Zare F. Effects of selenium nanoparticles on oxidative stress and apoptosis in cancer cells: a review. J Nanobiotechnol. 2020;18(1):1-12.
11. Li X, Yang Y, Zhang J, Wang J, Wang H, Liu Y, et al. Application of selenium nanoparticles in localized drug targeting for cancer therapy. Int J Mol Sci. 2022; 23(8):1-15.
12. Nakayama M, Akasaka H, Sasaki R, Geso M. Titanium dioxide-based nanoparticles to enhance radiation therapy for cancer: a literature review. J Nanotheranostics. 2024; 5(2): 60-74. doi.10.3390/jnt5020004
13. Ahamed M, Akhtar MJ, Khan MAM, Alhadlaq HA, Alshamsan A, Alrokayan SA. Zinc oxide nanoparticles induce oxidative stress and apoptosis in cancer cells via ROS generation. J Nanobiotechnol. 2022; 20(3):15-25.
14. Wang H, Zhang Y, Liu X, Chen T, Wong YS, Zheng W, et al. Selenium nanoparticles act as a double-edged sword: antioxidant at low doses and pro-oxidant at high doses in cancer therapy. Biomaterials. 2020; 61:1-10.
15. Chen T, Wong YS, Zheng W, Bai Y, Huang L. Selenium nanoparticles enhance ROS-mediated apoptosis in cancer cells via mitochondrial targeting. Nanoscale Res Lett. 2020; 15:23-30.
16. Budama-Kilinc Y, Gok B, Cetin Aluc C, Kecel-Gunduz S. In vitro and in silico evaluation of the design of nano-phyto-drug candidate for oral use against Staphylococcus aureus. PeerJ. 2023; 11:e15523. doi.10.7717/peerj.15523 PMid:37309371 PMCid:PMC10257901
17. Zhang Y, Li X, Wang Z, Liu X, Chen R. Radiosensitive effect of selenium nanoparticles on lung cancer cells (A549). J Biomed Nanotechnol. 2021; 17(5):654-62.
18. Wang L, Zhang Y, Liu X, Chen T, Zhao Y, Li X, et al. Synthesis and anticancer activity of black ginger selenium nanoparticles on gastric cancer cells. J Nanobiotechnol. 2022; 20(1):150.doi.10.1186/s12951-022-01576-6 PMid:36209164 PMCid:PMC9548198
19. Mi Y, Wang Z, Zhang J, Li H, Chen R. Silymarin-functionalized selenium nanoparticles induce apoptosis in gastric cancer cells via mitochondrial pathway. Int J Nanomedicine. 2022;17:345-57.
20. Soumya SL, Raj P, Thomas S. Selenium nanoparticles as anticancer agents: mechanisms and applications. Cancer Nanotechnol. 2018;9(1):12.
21. Cui X, Zhang Y, Li X, Wang Z. Laminarin-coated selenium nanoparticles inhibit gastric cancer cell growth via autophagy modulation. Biomed Pharmacother. 2023; 157:114154.
22. Zhang J, Wang X, Xu T. Elemental selenium at nano size (nano-Se) as a potential chemopreventive agent with reduced risk of selenium toxicity. Cancer Lett. 2020; 210(1):1-7.
23. Korde A, Paul S, Tripathi AK. Selenium nanoparticles induce cytotoxicity in human lung cancer cells. J Trace Elem Med Biol. 2019; 52:100-7.
24. Chen T, Wong YS, Zheng W, Bai Y, Huang L. Selenium nanoparticles fabricated in Undaria pinnatifida polysaccharide show potential for inhibiting cancer cell growth. Mater Sci Eng C Mater Biol Appl. 2021;72:152-9.
25. Li H, Zhao R, Zhang M, Bai H, Wang C. Anticancer efficacy of selenium nanoparticles against MCF-7 breast cancer cells. Colloids Surf B Biointerfaces. 2022; 155: 157-63.
26. Wang H, Zhang J, Yu H, Liu X, Chen T, Wong YS, et al. Cytotoxicity of selenium nanoparticles in human breast cancer cells. Biol Trace Elem Res. 2018; 171(2):405-12.
27. Kurinniy E, Petrov V, Ivanov A. Low-dose selenium nanoparticles show minimal apoptotic effect on colorectal cancer cells. J Biomed Mater Res A. 2021; 109(4): 567-75.
28. Yan Z, Liu Y, Zhou J. Probiotic-mediated selenium nanoparticles protect intestinal epithelial cells from oxidative stress. Front Microbiol. 2023; 14:112233.
29. Li J, Chen Y, Wang X. Hydroxyapatite-doped selenium nanoparticles induce protective autophagy in cancer cells. Mater Sci Eng C Mater Biol Appl. 2023; 136: 112672.
30. Torabi P. The Effects of Green-Synthesized Selenium Nanoparticles on ROS in Gastric Cancer (MKN-45) Cells in vitro. Int J BioLife Sci. 2024; 3(2):117.
31. Wang R, Ha KY, Dhandapani S, Kim YJ. Biologically synthesized black ginger-selenium nanoparticle induces apoptosis and autophagy of AGS gastric cancer cells by suppressing the PI3K/Akt/mTOR signaling pathway. J Nanobiotechnology. 2022; 20(1):441. doi: 10.1186/s12951-022-01576-6.
32. Mi Y, Wang Z, Zhang J, Li H, Chen R. Trends and recent progresses of selenium nanoparticles as novel autophagy regulators for cancer therapy. Front Oncol. 2023;13:XXXX.
33. Varlamova E, Baimler IV, Gudkov SV, Zvyagintseva TN, Zvyagintsev NV, Goltyaev MV, et al. Comparative Study of the Anticancer Effects of Selenium Nanoparticles and Selenium Nanorods: Regulation of Ca2+ Signaling, ER Stress and Apoptosis. Appl Sci. 2023;13(19):10763. doi.10.3390/app131910763
34. Zhang Y, Li X, Wang Z, Liu X, Chen R. Chitosan-coated selenium nanoparticles induce oxidative stress-mediated apoptosis in colon cancer cells. Int J Nanomedicine. 2021; 16:789-801.
35. Li H, Chen Q, Wang F, Zhang M, Bai H, Wang C. Curcumin-loaded selenium nanoparticles enhance ROS generation and mitochondrial dysfunction in breast cancer cells. Nanomedicine (Lond). 2020; 15(12):1235-48.
36. Wang L, Liu Y, Zhang J, Chen T, Wong YS, Zheng W, et al. Selenium nanoparticles suppress antioxidant defense systems in lung cancer cells. ACS Nano. 2019; 13(5):6547-59.
37. Kumar S, Menon S, Gupta VK, Gajula MN, Sangeetha N, Thakur V, et al. Gelatin-based selenium nanoparticles induce oxidative stress in prostate cancer cells. Biomater Sci. 2022;10(3):876-89.
38. Chen R, Xu D, Zhang L, Wang X, Li X, Wang Z, et al. ROS-mediated anticancer effects of selenium nanoparticles: a systematic review. Redox Biol. 2023;59:102592.
39. Almeida JP, Santos A, Pereira C, Carvalho A, Monteiro C, Gomes A, et al. Albumin-coated selenium nanoparticles protect normal cells from oxidative damage. Free Radic Biol Med. 2021; 167:45-53.
40. Singh R, Sharma P, Pandey NK, Mishra V, Tiwari RK, Tripathi A, et al. Green tea extract-mediated selenium nanoparticles show limited ROS induction in pancreatic cancer cells. J Cell Biochem. 2022; 123(5):912-20.
41. Hassan M, Ali MA, El-Sherbiny IM, El-Magd MA, El-Masry TA, Alghamdi AA, et al. Nrf2 activation by selenium nanoparticles in liver cancer models. Nano Today. 2023; 48:101732
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

YazdanPanah A, Alahdini Z, Torabi Parizi P, Rostami Motamed H. Evaluation of the effects of green-synthesized selenium nanoparticles using Onopordum acanthium extract on Reactive Oxygen Species (ROS) levels and viability of gastric cancer (AGS) cells. Feyz Med Sci J 2025; 29 (3) :266-276
URL: http://feyz.kaums.ac.ir/article-1-5343-en.html


Creative Commons License
This open access journal is licensed under a Creative Commons Attribution-NonCommercial ۴.۰ International License. CC BY-NC ۴. Design and publishing by Kashan University of Medical Sciences.
Copyright ۲۰۲۳© Feyz Medical Sciences Journal. All rights reserved.
Volume 29, Issue 3 (Bimonthly 2025) Back to browse issues page
مجله علوم پزشکی فیض Feyz Medical Sciences Journal
Persian site map - English site map - Created in 0.06 seconds with 44 queries by YEKTAWEB 4714