1. Ducsay CA, Goyal R, Pearce WJ, Wilson S, Hu X-Q, Zhang L. Gestational hypoxia and developmental plasticity. Physiol Rev. 2018; 98(3):1241-334. 2. Miller SL, Huppi PS, Mallard C. The consequences of fetal growth restriction on brain structure and neurodevelopmental outcome. J Physiol. 2016; 594(4): 807-23. 3. Jang EA, Longo LD, Goyal R. Antenatal maternal hypoxia: criterion for fetal growth restriction in rodents. Front Physiol. 2015; 6: 148431. 4. Xu Y, Fan Q. Relationship between chronic hypoxia and seizure susceptibility. CNS Neurosci Ther. 2022; 28(11): 1689-705. 5. Sun H, Juul HM, Jensen FE. Models of hypoxia and ischemia-induced seizures. J Neurosci Methods. 2016; 260: 252-60. 6. Allen LA, Harper RM, Vos SB, Scott CA, Lacuey N, Vilella L, et al. Peri‐ictal hypoxia is related to extent of regional brain volume loss accompanying generalized tonic‐clonic seizures. Epilepsia. 2020; 61(8):1570-80. 7. Patterson JL, Carapetian SA, Hageman JR, Kelley KR. Febrile seizures. Pediatr Ann. 2013; 42(12): e258-e63. 8. Hao J, Xu Q, Zhang Q, Xie X, Weng Y, Yang F, et al. Magnetic resonance imaging morphological study of the effects of juvenile febrile convulsions on the brain structure of medial temporal lobe epilepsy. Zhonghua yi xue za zhi. 2020; 100(27): 2121-5. 9. Juul HM, Brooks-Kayal AR, Talos DM. Why do febrile seizures involve specifically the developing brain? Febrile Seizures: Elsevier; 2023. p. 155-78. 10. Turovsky EA, Turovskaya MV, Kononov AV, Zinchenko VP. Short-term episodes of hypoxia induce posthypoxic hyperexcitability and selective death of GABAergic hippocampal neurons. Exp Neurol. 2013; 250: 1-7. 11. Zhuravin IA, Dubrovskaya NM, Vasilev DS, Postnikova TY, Zaitsev AV. Prenatal hypoxia produces memory deficits associated with impairment of long-term synaptic plasticity in young rats. Neurobiol Learn Mem. 2019; 164: 107066. 12. Tramoni-Negre E, Lambert I, Bartolomei F, Felician O. Long-term memory deficits in temporal lobe epilepsy. Rev Neurol. 2017; 173(7-8): 490-7. 13. Bakhtazad S, Ghotbeddin Z, Tabandeh MR, Rahimi K. Alpha-pinene ameliorate behavioral deficit induced by early postnatal hypoxia in the rat: study the inflammatory mechanism. Sci Rep. 2024; 14(1):6416. 14. Ghotbeddin Z, Basir Z, Jamshidian J, Delfi F. Modulation of behavioral responses and CA1 neuronal death by nitric oxide in the neonatal rat's hypoxia model. Brain Behav. 2020; 10(11): e01841. 15. Hoffman E, Winder SJ. A modified wire hanging apparatus for small animal muscle function testing. PLoS Curr. 2016; 8. 16. Sirajo MU, Murtala K, Oyem JC, Ishola AO, Owolabi LF. Motor function test protocol for parkinsonian triad in rodent model of Parkinson's disease. J Neurobehavioral Sci. 2022; 9(1):1-6. 17. Feng B, Chen Z. Generation of febrile seizures and subsequent epileptogenesis. Neurosci Bull. 2016; 32: 481-2. 18. Kloc ML, Marchand DH, Holmes GL, Pressman RD, Barry JM. Cognitive impairment following experimental febrile seizures is determined by sex and seizure duration. Epilepsy Behav. 2022; 126: 108430. 19. Isaeva E, Isaev D, Savrasova A, Khazipov R, Holmes GL. Recurrent neonatal seizures result in long‐term increases in neuronal network excitability in the rat neocortex. Eur J Neurosci. 2010; 31(8):1446-55. 20. Pisani F, Spagnoli C, Falsaperla R, Nagarajan L, Ramantani G. Seizures in the neonate: A review of etiologies and outcomes. Seizure. 2021; 85: 48-56. 21. Scantlebury MH, Heida JG. Febrile seizures and temporal lobe epileptogenesis. Epilepsy Res. 2010; 89(1): 27-33. 22. Patterson KP, Baram TZ, Shinnar S. Origins of temporal lobe epilepsy: febrile seizures and febrile status epilepticus. Neurotherapeutics. 2014; 11: 242-50. 23. Yagoubi N, Jomni Y, Sakly M. Hyperthermia-induced febrile seizures have moderate and transient effects on spatial learning in immature rats. Behav Neurol. 2015; 2015. 24. Postnikova TY, Griflyuk AV, Amakhin DV, Kovalenko AA, Soboleva EB, Zubareva OE, et al. Early life febrile seizures impair hippocampal synaptic plasticity in young rats. Int J Mol Sci. 2021; 22(15): 8218. 25. Martinos MM, Yoong M, Patil S, Chin RF, Neville BG, Scott RC, et al. Recognition memory is impaired in children after prolonged febrile seizures. Brain. 2012; 135(10): 3153-64. 26. Banasiak KJ, Xia Y, Haddad GG. Mechanisms underlying hypoxia-induced neuronal apoptosis. Progress Neurobiol. 2000; 62(3):215-49. 27. Shimoda LA, Polak J. Hypoxia. 4. Hypoxia and ion channel function. Am J Physiol Cell Physiol. 2011; 300(5):C951-C67. 28. Muntsant A, Shrivastava K, Recasens M, Giménez-Llort L. Severe perinatal hypoxic-ischemic brain injury induces long-term sensorimotor deficits, anxiety-like behaviors and cognitive impairment in a sex-, age-and task-selective manner in C57BL/6 mice but can be modulated by neonatal handling. Front Behav Neurosci. 2019; 13: 7. 29. Biran V, Heine VM, Verney C, Sheldon RA, Spadafora R, Vexler ZS, et al. Cerebellar abnormalities following hypoxia alone compared to hypoxic–ischemic forebrain injury in the developing rat brain. Neurobiol Dis. 2011; 41(1):138-46. 30. Wang X, Cui L, Ji X. Cognitive impairment caused by hypoxia: from clinical evidences to molecular mechanisms. Metab Brain Dis. 2022; 37(1): 51-66. 31. Stamenova V, Nicola R, Aharon-Peretz J, Goldsher D, Kapeliovich M, Gilboa A. Long-term effects of brief hypoxia due to cardiac arrest: hippocampal reductions and memory deficits. Resuscitation. 2018; 126:65-71. 32. Ranasinghe S, Or G, Wang EY, Ievins A, McLean MA, Niell CM, et al. Reduced cortical activity impairs development and plasticity after neonatal hypoxia ischemia. J Neurosci. 2015; 35(34): 11946-59. 33. Sun X, Xue F, Wen J, Gao L, Li Y, Jiang Q, et al. Seizure Characteristics and Background Amplitude-Integrated Electroencephalography Activity in Neonatal Rats Subjected to Hypoxia–Ischemia. Front Pediatr. 2022; 10: 837909. 34. Xu Y, Tian Y, Tian Y, Li X, Zhao P. Autophagy activation involved in hypoxic‐ischemic brain injury induces cognitive and memory impairment in neonatal rats. J Neurochem. 2016; 139(5): 795-805. 35. Cai XH, Zhou YH, Zhang CX, Hu LG, Fan XF, Li CC, et al. Chronic intermittent hypoxia exposure induces memory impairment in growing rats. Acta Neurobiol Exp. 2010; 70(3): 279-87. 36. Muthuraju S, Maiti P, Pati S, Solanki P, Sharma AK, Singh SB, et al. Role of cholinergic markers on memory function of rats exposed to hypobaric hypoxia. Eur J Pharmacol. 2011; 672(1-3): 96-105. 37. Goren B, Cakir A, Ocalan B, Kocoglu SS, Alkan T, Cansev M, et al. Long-term cognitive effects of uridine treatment in a neonatal rat model of hypoxic-ischemic encephalopathy. Brain Res. 2017; 1659: 81-7. 38. Dzieciol AM, Bachevalier J, Saleem KS, Gadian DG, Saunders R, Chong WK, et al. Hippocampal and diencephalic pathology in developmental amnesia. Cortex. 2017; 86:33-44. 39. Molavi M, Vann SD, de Vries LS, Groenendaal F, Lequin M. Signal change in the mammillary bodies after perinatal asphyxia. Am J Neuroradiol. 2019; 40(11):1829-34.
|