1. Katsura C, Ogunmwonyi I, Kankam HK, Saha S. Breast cancer: Presentation, investigation and management. Br J Hosp Med. 2022; 83(2): 1-7. doi:10.12968/hmed.2021.0459 PMid:35243878 2. Kashyap D, Pal D, Sharma R, Garg VK, Goel N, Koundal D, et al. Global Increase in Breast Cancer Incidence: Risk Factors and Preventive Measures. Biomed Res Int. 2022; 2022. doi:10.1155/2022/9605439 PMid:35480139 PMCid:PMC9038417 3. Wilkinson L, Gathani T. Understanding breast cancer as a global health concern. Br J Radiol. 2022;95(1130):20211033. doi:10.1259/bjr.20211033 PMid:34905391 PMCid:PMC8822551 4. Shamshirian A, Heydari K, Shams Z, Aref AR, Shamshirian D, Tamtaji OR, et al. Breast cancer risk factors in Iran: a systematic review & meta-analysis. Horm Mol Biol Clin Investig. 2020;41(4). doi:10.1515/hmbci-2020-0021 PMid:33079703 5. Zhu SY, Yu KD. Breast cancer vaccines: disappointing or promising? Front Immunol. 2022;13. doi:10.3389/fimmu.2022.828386 PMid:35154149 PMCid:PMC8831788 6. Bou Zerdan M, Ghorayeb T, Saliba F, Allam S, Bou Zerdan M, Yaghi M, et al. Triple Negative Breast Cancer: Updates on Classification and Treatment in 2021. Cancers. 2022;14 (5):1253. doi:10.3390/cancers14051253 PMid:35267561 PMCid:PMC8909187 7. Chaudhuri A, Kumar DN, Dehari D, Singh S, Kumar P, Bolla PK, et al. Emergence of Nanotechnology as a Powerful Cavalry against Triple-Negative Breast Cancer (TNBC). Pharmaceuticals. 2022;15(5):542. doi:10.3390/ph15050542 PMid:35631368 PMCid:PMC9143332 8. Bayraktar E, Bayraktar R, Oztatlici H, Lopez-Berestein G, Amero P, Rodriguez-Aguayo C. Targeting miRNAs and Other Non-Coding RNAs as a Therapeutic Approach: An Update. Non-coding RNA. 2023;9(2):27. doi:10.3390/ncrna9020027 PMid:37104009 PMCid:PMC10145226 9. Zelli V, Compagnoni C, Capelli R, Cannita K, Sidoni T, Ficorella C, et al. Circulating microRNAs as prognostic and therapeutic biomarkers in breast cancer molecular subtypes. J Pers Med. 2020; 10(3):98. doi:10.3390/jpm10030098 PMid:32842653 PMCid:PMC7563822 10. Graveel CR, Calderone HM, Westerhuis JJ, Winn ME, Sempere LF. Critical analysis of the potential for microRNA biomarkers in breast cancer management. Breast Cancer (Dove Med Press). 2015;7:59-79. doi:10.2147/BCTT.S43799 PMid:25759599 PMCid:PMC4346363 11. Misso G, Di Martino MT, De Rosa G, Farooqi AA, Lombardi A, Campani V, et al. Mir-34: a new weapon against cancer? Mol Ther Nucleic Acids. 2014;3:e194. doi:10.1038/mtna.2014.47 PMid:25247240 PMCid:PMC4222652 12. Zhang K, Zhang Y, Liu C, Xiong Y, Zhang J. MicroRNAs in the diagnosis and prognosis of breast cancer and their therapeutic potential (review). Int J Oncol. 2014;45:950-8. doi:10.3892/ijo.2014.2487 PMid:24913679 13. Banerjee M, Rajeswari VD. Inhibition of WNT signaling by conjugated microRNA nano-carriers: A new therapeutic approach for treating triple-negative breast cancer a perspective review. Crit Rev Oncol Hematol. 2023;182:103901. doi:10.1016/j.critrevonc.2022.103901 PMid:36584723 14. Csolle MP, Ooms LM, Papa A, Mitchell CA. PTEN and Other PtdIns(3,4,5)P(3) Lipid Phosphatases in Breast Cancer. Int J Mol Sci. 2020;21(23). doi:10.3390/ijms21239189 PMid:33276499 PMCid:PMC7730566 15. Gao PP, Qi XW, Sun N, Sun YY, Zhang Y, Tan XN, et al. The emerging roles of dual-specificity phosphatases and their specific characteristics in human cancer. Biochim et Biophys Acta Rev Cancer. 2021; 1876(1): 188562. doi:10.1016/j.bbcan.2021.188562 PMid:33964330 16. Hu Y, Zhu Q, Tang L. MiR-99a antitumor activity in human breast cancer cells through targeting of mTOR expression. PLoS One. 2014;9:e92099. doi:10.1371/journal.pone.0092099 PMid:24637915 PMCid:PMC3956864 17. Mohammadi-Yeganeh S, Paryan M, Samiee SM, Soleimani M, Arefian E, Azadmanesh K, et al. Development of a robust, low cost stem-loop real-time quantification PCR technique for miRNA expression analysis. Mol Biol Rep. 2013; 40(5): 3665-74. doi:10.1007/s11033-012-2442-x PMid:23307300 18. Chandrashekar DS, Karthikeyan SK, Korla PK, Patel H, Shovon AR, Athar M, et al. UALCAN: An update to the integrated cancer data analysis platform. Neoplasia (New York, NY). 2022; 25:18-27. doi:10.1016/j.neo.2022.01.001 PMid:35078134 PMCid:PMC8788199 19. Rahbaralam Z, Mannani D, Dehghani A, Akbari H, Fatemi A, Bazrafshan M-R, et al. The Epidemiological Trend of Breast Cancer in the South of Fars Province in Iran. Indian J Gynecologic Oncol. 2023;21(1):17. doi:10.1007/s40944-022-00693-2 20. Obidiro O, Battogtokh G, Akala EO. Triple Negative Breast Cancer Treatment Options and Limitations: Future Outlook. Pharmaceutics. 2023;15(7). doi:10.3390/pharmaceutics15071796 PMid:37513983 PMCid:PMC10384267 21. Li L, Zhang F, Liu Z, Fan Z. Immunotherapy for Triple-Negative Breast Cancer: Combination Strategies to Improve Outcome. Cancers (Basel). 2023;15(1). doi:10.3390/cancers15010321 PMid:36612317 PMCid:PMC9818757 22. Ye F, Dewanjee S, Li Y, Jha NK, Chen ZS, Kumar A, et al. Advancements in clinical aspects of targeted therapy and immunotherapy in breast cancer. Mol Cancer. 2023;22(1):105. doi:10.1186/s12943-023-01805-y PMid:37415164 PMCid:PMC10324146 23. Loh HY, Norman BP, Lai KS, Rahman N, Alitheen NBM, Osman MA. The Regulatory Role of MicroRNAs in Breast Cancer. Int J Mol Sci. 2019; 20(19) doi:10.3390/ijms20194940 PMid:31590453 PMCid:PMC6801796 24. Condrat CE, Thompson DC, Barbu MG, Bugnar OL, Boboc A, Cretoiu D, et al. miRNAs as Biomarkers in Disease: Latest Findings Regarding Their Role in Diagnosis and Prognosis. Cells. 2020;9(2). doi:10.3390/cells9020276 PMid:31979244 PMCid:PMC7072450 25. Georgescu MM. PTEN Tumor Suppressor Network in PI3K-Akt Pathway Control. Genes & cancer. 2010;1(12):1170-7. doi:10.1177/1947601911407325 PMid:21779440 PMCid:PMC3092286 26. Ertay A, Ewing RM, Wang Y. Synthetic lethal approaches to target cancers with loss of PTEN function. Genes & diseases. 2023;10(6):2511-27. doi:10.1016/j.gendis.2022.12.015 PMid:37533462 PMCid:PMC7614861 27. Milella M, Falcone I, Conciatori F, Cesta Incani U, Del Curatolo A, Inzerilli N, et al. PTEN: Multiple Functions in Human Malignant Tumors. Front Oncol. 2015;5:24. doi:10.3389/fonc.2015.00024 PMid:25763354 PMCid:PMC4329810 28. Moses C, Nugent F, Waryah CB, Garcia-Bloj B, Harvey AR, Blancafort P. Activating PTEN Tumor Suppressor Expression with the CRISPR/dCas9 System. Mol Ther Nucleic Acids. 2019;14:287-300. doi:10.1016/j.omtn.2018.12.003 PMid:30654190 PMCid:PMC6348769 29. Prvanović M, Nedeljković M, Tanić N, Tomić T, Terzić T, Milovanović Z, et al. Role of PTEN, PI3K, and mTOR in Triple-Negative Breast Cancer. Life (Basel, Switzerland). 2021;11(11). doi:10.3390/life11111247 PMid:34833123 PMCid:PMC8621563 30. Chai C, Wu H, Wang B, Eisenstat DD, Leng RP. MicroRNA-498 promotes proliferation and migration by targeting the tumor suppressor PTEN in breast cancer cells. Carcinogenesis. 2018;39(9):1185-96. doi:10.1093/carcin/bgy092 PMid:29985991 PMCid:PMC6148990 31. Bao C, Liu T, Qian L, Xiao C, Zhou X, Ai H, et al. Shikonin inhibits migration and invasion of triple-negative breast cancer cells by suppressing epithelial-mesenchymal transition via miR-17-5p/PTEN/Akt pathway. J Cancer. 2021;12(1):76-88. doi:10.7150/jca.47553 PMid:33391404 PMCid:PMC7738816 32. Wu Y, Sarkissyan M, Elshimali Y, Vadgama JV. Triple negative breast tumors in African-American and Hispanic/Latina women are high in CD44+, low in CD24+, and have loss of PTEN. PloS One. 2013;8(10):e78259. doi:10.1371/journal.pone.0078259 PMid:24167614 PMCid:PMC3805609 33. Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Nati Acad Sci U S A. 2006;103(7):2257-61. doi:10.1073/pnas.0510565103 PMid:16461460 PMCid:PMC1413718 34. Zhang T, Wu Y, Yang D, Wu C, Li H. Preparation, characterization, and in vitro tumor-suppressive effect of anti-miR-21-equipped RNA nanoparticles. Biochemical Biophysical Res Communications. 2021;558:107-13. doi:10.1016/j.bbrc.2021.04.040 PMid:33906109 35. Gao J, Wang S, Zhang Z, Li J. Long non-coding RNA BRE-AS1 inhibits the proliferation, migration, and invasion of cancer cells in triple-negative breast cancer and predicts patients' survival by downregulating miR-21. BMC Cancer. 2021;21(1):745. doi:10.1186/s12885-021-08294-6 PMid:34182945 PMCid:PMC8240350 36. Dong G, Liang X, Wang D, Gao H, Wang L, Wang L, et al. High expression of miR-21 in triple-negative breast cancers was correlated with a poor prognosis and promoted tumor cell in vitro proliferation. Med Oncol (Northwood, London, England). 2014;31(7):57. doi:10.1007/s12032-014-0057-x PMid:24930006 37. Yang L, Feng Y, Qi P, Xu S, Zhou Y. Mechanism of serum miR-21 in the pathogenesis of familial and triple negative breast cancer. J Biol Regul Homeost Agents. 2016;30(4):1041-5. 38. Song N, Liang B, Wang D. The function of MiR-21 expression differences and pathogenesis on familial and triple negative breast Cancer serum. Pakistan J Pharmaceutical Sci. 2016;29(2 Suppl):679-84. 39. MacKenzie TA, Schwartz GN, Calderone HM, Graveel CR, Winn ME, Hostetter G, et al. Stromal expression of miR-21 identifies high-risk group in triple-negative breast cancer. Am J Pathol. 2014;184(12):3217-25. doi:10.1016/j.ajpath.2014.08.020 PMid:25440114 PMCid:PMC4258602 40. Zhao D, Tu Y, Wan L, Bu L, Huang T, Sun X, et al. In vivo monitoring of angiogenesis inhibition via down-regulation of mir-21 in a VEGFR2-luc murine breast cancer model using bioluminescent imaging. PloS One. 2013;8(8):e71472. doi:10.1371/journal.pone.0071472 PMid:23951172 PMCid:PMC3738509 41. Yin H, Xiong G, Guo S, Xu C, Xu R, Guo P, et al. Delivery of Anti-miRNA for Triple-Negative Breast Cancer Therapy Using RNA Nanoparticles Targeting Stem Cell Marker CD133. Mol Ther 2019;27(7):1252-61. doi:10.1016/j.ymthe.2019.04.018 PMid:31085078 PMCid:PMC6612664 42. Ren Y, Wang R, Gao L, Li K, Zhou X, Guo H, et al. Sequential co-delivery of miR-21 inhibitor followed by burst release doxorubicin using NIR-responsive hollow gold nanoparticle to enhance anticancer efficacy. J Control Release. 2016;228:74-86. doi:10.1016/j.jconrel.2016.03.008 PMid:26956593 43. Bahreyni A, Alibolandi M, Ramezani M, Sarafan Sadeghi A, Abnous K, Taghdisi SM. A novel MUC1 aptamer-modified PLGA-epirubicin-PβAE-antimir-21 nanocomplex platform for targeted co-delivery of anticancer agents in vitro and in vivo. Colloids surf B, Biointerfaces. 2019; 175: 231-8. doi:10.1016/j.colsurfb.2018.12.006 PMid:30537619 44. Devulapally R, Sekar NM, Sekar TV, Foygel K, Massoud TF, Willmann JK, et al. Polymer nanoparticles mediated codelivery of antimiR-10b and antimiR-21 for achieving triple negative breast cancer therapy. ACS Nano. 2015;9(3):2290-302. doi:10.1021/nn507465d PMid:25652012 PMCid:PMC4374409
|