1. Calatayud MP, Asin L, Tres A, Goya GF, Ibarra MR. Cell bystander effect induced by radiofrequency electromagnetic fields and magnetic nanoparticles. Curr Nanosci 2016; 12(3): 372-7. 2. Boyd M, Ross SC, Dorrens J, Fullerton NE, Tan KW, Zalutsky MR, et al. Radiation-induced biologic bystander effect elicited in vitro by targeted radiopharmaceuticals labeled with a-, b-, and Auger electron–emitting radionuclides. J Nucl Med 2006; 47(6): 1007-15. 3. Burdak-Rothkamm S, Rothkamm K. Radiation-induced bystander and systemic effects serve as a unifying model system for genotoxic stress responses. Mutat Res Rev Mutat Res 2018; 42(5): 221-8. 4. Marin A, Martin M, Linan O, Alvarenga F, López M, Fernández L, et al. Bystander effects and radiotherapy. Rep Pract Oncol Radiother 2015; 20(1): 12-21. 5. Olsson MG, Nilsson EC, Rutardóttir S, Paczesny J, Pallon J, Akerstrom B. Bystander cell death and stress response is inhibited by the radical scavenger α1-microglobulin in irradiated cell cultures. Radiat Res 2010; 174(5): 590-600. 6. Bazak J, Fahey JM, Wawak K, Korytowski W, Girotti AW. Bystander effects of nitric oxide in anti-tumor photodynamic therapy. Cancer Cell Microenviron 2017; 4(1). 7. Chen Z, Xie MX, Wang XF, Lu Q. Different effects of therapeutic ultrasound parameters and culture conditions on gene transfection efficiency. Chinese. J Cancer Res 2008; 20(4): 249-54. 8. Miller DL, Smith NB, Bailey MR, Czarnota GJ, Hynynen K, Makin IRS, et al. Overview of therapeutic ultrasound applications and safety considerations. J Ultrasound Med 2012; 31(4): 623-34. 9. Sazgarnia A, Shanei A. Evaluation of acoustic cavitation in terephthalic acid solutions containing gold nanoparticles by the spectrofluorometry method. Int J Photoenergy 2012; 37(6): 105-10. 10. Kaufman GE. Mutagenicity of ultrasound in cultured mammalian cells. Ultrasound Med Biol 1985; 11(3): 497-501. 11. Hei TK. Cyclooxygenase‐2 as a signaling molecule in radiation‐induced bystander effect. Mol Carcinog 2006; 45(6): 455-60. 12. Han W, Chen S, Yu K, Wu L. Nitric oxide mediated DNA double strand breaks induced in proliferating bystander cells after α-particle irradiation. Mutat Res 2010; 684(1): 81-9. 13. Yakovlev VA. Role of nitric oxide in the radiation-induced bystander effect. Redox Biol 2015; 6: 396-400. 14. Yahyapour R, Motevaseli E, Rezaeyan A, Abdollahi H, Farhood B, Cheki M, et al. Mechanisms of Radiation Bystander and Non-Targeted Effects: Implications to Radiation Carcinogenesis and Radiotherapy. Curr Radiopharm 2018; 11(1): 34-45 15. Barati AH, Mokhtari -Dizaji M, Mozdarani H, Bathaei SZ, Hassan ZM. Free hydroxyl radical dosimetry by using 1 MHz low level ultrasound waves. Iran J Radiat Res 2006; 3(4): 163-9. 16. Furusawa Y, Hassan MA, Zhao QL, Ogawa R, Tabuchi Y, Kondo T. Effects of therapeutic ultrasound on the nucleus and genomic DNA. Ultrason Sonochem 2014; 21(6): 2061-8. 17. Velculescu VE, El-Deiry WS. Biological and clinical importance of the P53 tumor suppressor gene. Clin Chem 1996; 42(6): 858-68. 18. Souza RP, Bonfim-Mendonca PS, Ratti BA, Kaplum V, Bruschi ML, Nakamura CV, et al. Oxidative Stress Triggered by Apigenin Induces Apoptosis in a Comprehensive Panel of Human Cervical Cancer-Derived Cell Lines. Oxid Med Cell Longev 2017; 15(1): 18-25. 19. Hamada N, Matsumoto H, Hara T, Kobayashi Y. Intercellular and intracellular signaling pathways mediating ionizing radiation-induced bystander effects. J Radiat Res 2007; 48(2): 87-95. 20. Chaudhry MA. Bystander effect: biological endpoints and microarray analysis. Mutat Res 2006; 597(1): 98-112. 21. Koturbash I, Loree J, Kutanzi K, Koganow C, Pogribny I, Kovalchuk O. In vivo bystander effect: cranial X-irradiation leads to elevated DNA damage, altered cellular proliferation and apoptosis, and increased P53 levels in shielded spleen. Int J Rad Oncol Biol Phys 2008; 70(2): 554-62.
|