[صفحه اصلی ]   [Archive] [ English ]  
:: صفحه اصلي :: درباره نشريه :: آخرين شماره :: تمام شماره‌ها :: جستجو :: ثبت نام :: ارسال مقاله :: تماس با ما ::
:: دوره 22، شماره 5 - ( دوماه نامه 1397 ) ::
جلد 22 شماره 5 صفحات 478-486 برگشت به فهرست نسخه ها
اثر شدت‌های مختلف تمرین دایره‌ای مقاومتی بر پروتئین وابسته به آگوتی، انسولین و گلوکز پلاسما در مردان جوان
نجمه رضایی نژاد* ، عباس قنبری نیاکی ، رستم علی زاده
دانشکده تربیت بدنی و علوم ورزشی، دانشگاه مازندران، بابلسر، ایران ، najmeh_rn@yahoo.com
چکیده:   (437 مشاهده)
سابقه و هدف: پروتئین وابسته به آگوتی پپتیدی است که بر رفتار تغذیه ­ای، هموستاز انرژی و نیز بر محور هیپوتالاموس-هیپوفیز-آدرنال تاثیرگذار است. هدف از انجام این تحقیق بررسی اثر 6 هفته تمرین دایره‌ای مقاومتی با شدت‌های مختلف بر سطوح پلاسمایی پروتئین وابسته به آگوتی، انسولین و گلوکز در مردان جوان بود.
مواد و روش ­ها: در این تحقیق تجربی 45 نفر از دانشجویان پسر 20 الی 24 ساله (با میانگین وزنی 76/3±61/70 کیلوگرم، سن 17/0±55/21 سال و قد 15/1±84/174 سانتی‌متر) ساکن خوابگاه به­ طور تصادفی در 5 گروه 9 نفره (کنترل، 20، 40، 60 و 80 درصد حداکثر یک تکرار بیشینه) قرار گرفتند. گروه‌های تمرینی 24 جلسه تمرین دایره‌ای مقاومتی را با شدت‌های تعیین ‌شده انجام دادند. گروه کنترل در طول این دوره در هیچ‌گونه برنامه ورزشی منظمی شرکت نکرد. نمونه‌های خونی 48 ساعت قبل و پس از تمرینات (3 ساعت پس از صرف صبحانه نرمال) از ورید بازویی جمع‌آوری شد.
نتایج: نتایج نشان داد بین تغییرات سطوح پروتئین وابسته به آگوتی پلاسما (0/399=P) و گلوکز (0/27=P) در گروه‌های مختلف تفاوت معنی‌داری وجود ندارد، اما برای انسولین (013/0P=) در گروه‌های مختلف تفاوت معنی‌دار مشاهده شد.
نتیجه­ گیری: این پژوهش نشان داد سطوح پروتئین وابسته به آگوتی در شدت بالای تمرین مقاومتی (80 درصد یک تکرار بیشینه) کاهش بیشتری داشته و لذا این شدت تمرینی می­ تواند در کاهش اشتها و جلوگیری از افزایش وزن در مردان جوان مفید باشد.
واژه‌های کلیدی: تمرینات دایره‌ای مقاومتی، پروتئین وابسته به آگوتی، صبحانه نرمال، شدت تمرین
متن کامل [PDF 308 kb]   (160 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: عمومى
دریافت: ۱۳۹۷/۱/۱۹ | پذیرش: ۱۳۹۷/۶/۱۳ | انتشار: ۱۳۹۷/۹/۷
فهرست منابع
1. Horowitz JF. Fatty acid mobilization from adipose tissue during exercise. Trends Endocrinol Metabol 2003; 14(8): 386-92.
2. Do K, Laing BT, Landry T, Bunner W, Mersaud N, Matsubara T, et al. The effects of exercise on hypothalamic neurodegeneration of Alzheimer’s disease mouse model. PloS One 2018; 13(1): e0190205.
3. Rahmani GM, Rahmaninia F, Mirzaei B, Hedayati M. Effects of 8 weeks of aerobic training on agouti-related peptide, appetite hormones and insulin resistance in overweight sedentary women. Pars J Med Sci 2016; 14(2): 1-8. [in Persian]
4. Rodrigues KC, Pereira RM, de Campos TD, Moura RFd, da Silva AS, Cintra DE, et al. The Role of Physical Exercise to Improve the Browning of White Adipose Tissue via POMC Neurons. Front Cell Neurosci 2018; 12: 88.
5. Laing B, Do K, Matsubara T, Wert D, Avery M, Langdon E, et al. Voluntary exercise improves hypothalamic and metabolic function in obese mice. J Endocrinol 2016; 229(2): 109-22.
6. Loos RJ, Rankinen T, Rice T, Rao D, Leon AS, Skinner JS, et al. Two ethnic-specific polymorphisms in the human Agouti-related protein gene are associated with macronutrient intake. Am J Clin Nutrition 2005; 82(5): 1097-101.
7. Lu XY, Shieh KR, Kabbaj M, Barsh GS, Akil H, Watson SJ. Diurnal rhythm of agouti-related protein and its relation to corticosterone and food intake. Endocrinology 2002; 143(10): 3905-15.
8. Arens J, Moar KM, Eiden S, Weide K, Schmidt I, Mercer JG, et al. Age-dependent hypothalamic expression of neuropeptides in wild-type and melanocortin-4 receptor-deficient mice. Physiol Genomics 2003; 16(1): 38-46.
9. Li JY, Finniss S, Yang Y-K, Zeng Q, Qu S-Y, Barsh G, et al. Agouti-related protein-like immunoreactivity: characterization of release from hypothalamic tissue and presence in serum. Endocrinology 2000; 141(6): 1942-50.
10. Shen CP, Wu KK, Shearman LP, Camacho R, Tota MR, Fong TM, et al. Plasma Agouti‐Related Protein Level: A Possible Correlation with Fasted and Fed States in Humans and Rats. J Neuroendocrinol 2002; 14(8): 607-10.
11. Katsuki A, Sumida Y, Furuta M, Araki-sasaki R, Hori Y, Yano Y, et al. Plasma Levels of Agouti-related Protein (AGRP) Are Increased in Obese Men. J Clin Endocrinol Metabol 2001; 86(5):1921-4.
12. Ghanbari-Niaki A, Nabatchian S, Hedayati M. Plasma agouti-related protein (AGRP), growth hormone, insulin responses to a single circuit-resistance exercise in male college students. Peptides 2007; 28(5): 1035-9.
13. Zhao S, Snow RJ, Stathis C, Febbraio M, Carey M. Muscle adenine nucleotide metabolism during and in recovery from maximal exercise in humans. J Appl Physiol 2000; 88(5): 1513-9.
14. Hellsten Y, Richter EA, Kiens B, Bangsbo J. AMP deamination and purine exchange in human skeletal muscle during and after intense exercise. J Physiol 1999; 520(3): 909-20.
15. Ghanbari Niaki A, Sharifi Rigi A. Serum agouti--related protein (AGRP) response to a single session of circuit-cesistance exercise at different intensities in male college students. J Appl Exercise Physiol 2009; 5(9): 55-63. [in Persian ]
16. Hosseini-Khakhak S, Ghanbari Niaki A, Rahbarizadeh F, Mohagheghi M, Mehdi Khabazian B, Fathi R, et al. The effect of treadmill running on plasma and muscle agouti-related protein (AGRP) concentration in male rats. Iran J Endocrinol Metabol 2009; 11(4): 455-61. [in Persian]
17. Cooke WH, Carter JR. Strength training does not affect vagal–cardiac control or cardiovagal baroreflex sensitivity in young healthy subjects. Eur J Appl Physiol 2005; 93(5-6): 719-25.
18. Ghanbari Niaki A, Ardeshiri S, AliakbariBaydokhty M, Saeidi A. Effects of Circuit Resistance Training with Crocus sativus Supplementation on Insulin and Estradiol Hormones Response. Horizon Med Sci 2016; 22(2): 125-30. [in Persian]
19. Katsuki A, Sumida Y, Gabazza EC, Murashima S, Tanaka T, Furuta M, et al. Plasma levels of agouti-related protein are increased in obese men. J Clin Endocrinol Metabol 2001; 86(5): 1921-4.
20. De Rijke C, Hillebrand JJ, Verhagen L, Roeling T, Adan R. Hypothalamic neuropeptide expression following chronic food restriction in sedentary and wheel-running rats. J Molecular Endocrinol 2005; 35(2): 381-90.
21. Breen TL, Conwell IM, Wardlaw SL. Effects of fasting, leptin, and insulin on AGRP and POMC peptide release in the hypothalamus. Brain Res 2005; 1032(1-2): 141-8.
22. Rashidlamir A, Ghanbari-niaki A. Effect of 8-week circuit training on lymphocyte AGRP gene expression in well-trained wrestlers. Daneshvar 2010; 18(89): 67-72. [in Persian]
23. Ghanbari Niaki A, Rashidlamir A, Hojjati M, Ghasemi M. Effect of Feeding Glucose on AGRP, Insulin and Glucose Levels after a Session Circular Resistance Activities in Young Free Wrestlers. J App Exercise Physiol 2012; 13(4): 15-26. [in Persian ]
24. Archer ZA, Rayner DV, Mercer JG. Hypothalamic gene expression is altered in underweight but obese juvenile male Sprague-Dawley rats fed a high-energy diet. J Nutr 2004; 134(6): 1369-74.
25. Makimura H, Mizuno TM, Isoda F, Beasley J, Silverstein JH, Mobbs CV. Role of glucocorticoids in mediating effects of fasting and diabetes on hypothalamic gene expression. BMC Physiol 2003; 3(1): 5.
26. Williams G, Cai XJ, Elliott JC, Harrold JA. Anabolic neuropeptides. Physiol Behav 2004; 81(2): 211-22.
27. Wortley KE, Anderson KD, Yasenchak J, Murphy A, Valenzuela D, Diano S, et al. Agouti-related protein-deficient mice display an age-related lean phenotype. Cell Metabol 2005; 2(6): 421-7.
28. Payedar Ardakani M, Saki B, Kordi M, Gaieni A. Effect of Endurance Training on Plasma AGRP and NPY Levels in Wistar Rats. Sci J Ilam Univ Med Sci 2017; 24(6): 23-32. [in Persian]
29. Woods SC, Benoit SC, Clegg DJ, Seeley RJ. Regulation of energy homeostasis by peripheral signals. Best Pract Res Clin Endocrinol Metab 2004; 18(4): 497-515.
30. Angelopoulos N, Goula A, Tolis G. Current knowledge in the neurophysiologic modulation of obesity. Metabolism 2005; 54(9): 1202-17.
31. Sergeyev V, Broberger C, Gorbatyuk O, Hökfelt T. Effect of 2-mercaptoacetate and 2-deoxy-D-glucose administration on the expression of NPY, AGRP, POMC, MCH and hypocretin/orexin in the rat hypothalamus. Neuroreport 2000; 11(1): 117-20.
32. Lee K, Li B, Xi X, Suh Y, Martin RJ. Role of neuronal energy status in the regulation of adenosine 5′-monophosphate-activated protein kinase, orexigenic neuropeptides expression, and feeding behavior. Endocrinology 2005; 146(1): 3-10.
ارسال پیام به نویسنده مسئول

ارسال نظر درباره این مقاله
نام کاربری یا پست الکترونیک شما:

CAPTCHA code


XML   English Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Rezaeinezhad N, Ghanbari-Niaki A, Alizadeh R. The effect of circuit resistance training with different intensities on the agouti-related protein, insulin and glucose plasma levels in young men. Feyz. 2018; 22 (5) :478-486
URL: http://feyz.kaums.ac.ir/article-1-3575-fa.html

رضایی نژاد نجمه، قنبری نیاکی عباس، علی زاده رستم. اثر شدت‌های مختلف تمرین دایره‌ای مقاومتی بر پروتئین وابسته به آگوتی، انسولین و گلوکز پلاسما در مردان جوان. دوماه نامه علمي ـ پژوهشي فيض. 1397; 22 (5) :478-486

URL: http://feyz.kaums.ac.ir/article-1-3575-fa.html



دوره 22، شماره 5 - ( دوماه نامه 1397 ) برگشت به فهرست نسخه ها
مجله علمی پژوهشی فیض ::: دانشگاه علوم پزشکی کاشان KAUMS Journal ( FEYZ )
Persian site map - English site map - Created in 0.06 seconds with 32 queries by YEKTAWEB 3897