1. Araki E, Tanaka A, Inagaki N, Ito H, Ueki K, Murohara T, et al. Diagnosis, Prevention, and Treatment of Cardiovascular Diseases in People with Type 2 Diabetes and Prediabetes-A Consensus Statement Jointly From the Japanese Circulation Society and the Japan Diabetes Society-. Circ J. 2020;85(1):82-125. doi:10.1253/circj.CJ-20-0865 2. Brandts J. Lipidmanagement zur Reduktion des kardiovaskulären Risikos bei Typ-2-Diabetes. Die Diabetologie. 2023:1-7. 3. Dzhumatovich AS, Zholdybayevna YN, Kouchek M, Miri M. Cardiopulmonary resuscitation (CPR) - an urgent need for public education in Iran as a developing country. Novel Clin Med 2023;2(1):1-2. doi: 10.22034/ncm.2023.383473.1071 4. Boudina S, Abel ED. Diabetic cardiomyopathy, causes and effects. Reviews in Endocrine Metab Disord. 2010;11:31-9. doi:10.1007/s11154-010-9131-7 PMid:20180026 PMCid:PMC2914514 5. Arany Z. PGC-1 coactivators and skeletal muscle adaptations in health and disease. Current opinion in genetics & development. 2008;18(5):426-34. doi:10.1016/j.gde.2008.07.018 PMid:18782618 PMCid:PMC2629557 6. Fernandez-Marcos PJ, Auwerx J. Regulation of PGC-1α, a nodal regulator of mitochondrial biogenesis. Am J Clin Nutr. 2011;93(4):884S-90S. doi:10.3945/ajcn.110.001917 PMid:21289221 PMCid:PMC3057551 7. Abdollahi M, Hosseini M, Riyahi Malayeri S. The Effect of High Intensity Training and Beetroot Consumption on NRF1 and TFAM in Visceral Adipose Tissue of Aged Type 2 Diabetic Rats. Iran J Diabetes Metab. 2023;22(6):361-71. 8. Liu D, Ban T, Jiang S. Mechanisms and Research Progress of Type 2 Diabetes Mellitus and Its Hepatic Complications. MEDS Clin Med. 2023; 4(5):95-105. doi:10.23977/medsc.2023.040514 9. Yan L, Vaghari-Tabari M, Malakoti F, Moein S, Qujeq D, Yousefi B, et al. Quercetin: An effective polyphenol in alleviating diabetes and diabetic complications. Crit Rev Food Sci Nutr. 2022:1-24. doi:10.1080/10408398.2022.2067825 PMid:35468007 10. Almutawa AM, Al-Sowayan NS. Effect of Physical Activityon Insulin Resistance in Diabetes Mellitus. 2023. 11. Tayebi SM, Golmohammadi M, Eslami R, Shakiba N, Costa PB. The Effects of Eight Weeks of Circuit Resistance Training on Serum METRNL Levels and Insulin Resistance in Individuals with Type 2 Diabetes. J Diabetes Metab Disord. 2023:1-8. doi:10.61186/aassjournal.1283 12. Shykholeslami Z, Abdi A, Hosseini SA, Barari A. Effect of Continuous Aerobic Training with Citrus Aurantium L. on Mitogen-Activated Protein Kinase and Phosphatidylinositol 3-Kinases Gene Expression in the Liver Tissue of the Elderly Rats. J Ilam Univ Med Sci. 2022; 29(6). doi:10.52547/sjimu.29.6.81 13. Egan B, Zierath JR. Exercise metabolism and the molecular regulation of skeletal muscle adaptation. Cell Metab. 2013;17(2):162-84. doi:10.1016/j.cmet.2012.12.012 PMid:23395166 14. Phillips A, Cobbold C. A comparison of the effects of aerobic and intense exercise on the type 2 diabetes mellitus risk marker adipokines, adiponectin and retinol binding protein-4. Int J Chronic Dis. 2014; 2014. doi:10.1155/2014/358058 PMid:26464853 PMCid:PMC4590916 15. Ahmadizad S, Avansar AS, Ebrahim K, Avandi M, Ghasemikaram M. The effects of short-term high-intensity interval training vs. moderate-intensity continuous training on plasma levels of nesfatin-1 and inflammatory markers. Horm Mol Biol Clin Investig. 2015; 21(3):165-73. doi:10.1515/hmbci-2014-0038 PMid:25581765 16. Ahmadi M, Kazemzadeh Y, Mirzayan S, Shahedi V, Eizadi M. Improvement of glucose levels and insulin resistance in the absence of change in adiponectin expression in subcutaneous adipose tissue in response to intence interval training in obese diabetic rats. Razi J Med Sci. 2021; 28(8):33-43. 17. Khajehlandi M. A comparison of the effect of endurance training on the activities of glutathione peroxidase and superoxide dismutase in the cardiac tissue of healthy and diabetic rats. Yafteh. 2020; 21(4). 18. Eitah HE, Maklad YA, Abdelkader NF, El Din AAG, Badawi MA, Kenawy SA. Modulating impacts of quercetin/sitagliptin combination on streptozotocin-induced diabetes mellitus in rats. Toxicol Appl Pharmacol. 2019;365:30-40. doi:10.1016/j.taap.2018.12.011 PMid:30576699 19. Pengam M, Goanvec C, Moisan C, Simon B, Albacète G, Féray A, et al. Moderate intensity continuous versus high intensity interval training: Metabolic responses of slow and fast skeletal muscles in rat. Plos One. 2023;18(10):e0292225. doi:10.1371/journal.pone.0292225 PMid:37792807 PMCid:PMC10550171 20. Dupas J, Feray A, Guernec A, Pengam M, Inizan M, Guerrero F, et al. Effect of personalized moderate exercise training on Wistar rats fed with a fructose enriched water. Nutr Metab. 2018; 15(1):1-12. doi:10.1186/s12986-018-0307-6 PMid:30305835 PMCid:PMC6171221 21. Li B, Liang F, Ding X, Yan Q, Zhao Y, Zhang X, et al. Interval and continuous exercise overcome memory deficits related to β-Amyloid accumulation through modulating mitochondrial dynamics. Behav Brain Res. 2019; 376: 112171. doi:10.1016/j.bbr.2019.112171 PMid:31445975 22. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 2001; 25 (4):402-8. doi:10.1006/meth.2001.1262 PMid:11846609 23. Tabari E, Mohebbi H. The effects of high and moderate intensity interval training on skeletal muscle of TFAM and NRF1 in type 2 diabetic male rats. J Practical Studies Biosciences Sport. 2022; 10(21):8-18. 24. Yao Z, Gu Y, Zhang Q, Liu L, Meng G, Wu H, et al. Estimated daily quercetin intake and association with the prevalence of type 2 diabetes mellitus in Chinese adults. Eur J Nutr. 2019;58:819-30.doi:10.1007/s00394-018-1713-2 PMid:29754250 25. Prior RL, Wu X. Anthocyanins: structural characteristics that result in unique metabolic patterns and biological activities. Free Radical Res. 2006;40 (10):1014-28. doi:10.1080/10715760600758522 PMid:17015246 26. Li WG, Zhang X, Wu Y, Tian X. Anti-inflammatory effect and mechanism of proanthocyanidins from grape seeds. Acta Pharmacologica Sinica. 2001;22(12):1117-20. 27. Williams RJ, Spencer JP, Rice-Evans C. Flavonoids: antioxidants or signalling molecules? Free Radical Biol Med. 2004;36(7):838-49. doi:10.1016/j.freeradbiomed.2004.01.001 PMid:15019969 28. Panchal SK, Poudyal H, Brown L. Quercetin ameliorates cardiovascular, hepatic, and metabolic changes in diet-induced metabolic syndrome in rats. J Nutr. 2012;142(6):1026-32. doi:10.3945/jn.111.157263 PMid:22535755 29. Babujanarthanam R, Kavitha P, Pandian MR. Quercitrin, a bioflavonoid improves glucose homeostasis in streptozotocin‐induced diabetic tissues by altering glycolytic and gluconeogenic enzymes. Fundam Clin Pharmacol. 2010;24(3):357-64. doi:10.1111/j.1472-8206.2009.00771.xPMid:19689449 30. Bahadoran Z, Golzarand M, Mirmiran P, Saadati N, Azizi F. The association of dietary phytochemical index and cardiometabolic risk factors in adults: Tehran Lipid and Glucose Study. J Human Nutr Dietetics. 2013; 26:145-53. doi:10.1111/jhn.12048 PMid:23581519 31. Wein S, Behm N, Petersen RK, Kristiansen K, Wolffram S. Quercetin enhances adiponectin secretion by a PPAR-γ independent mechanism. European J Pharmaceutical Sci. 2010;41(1):16-22.doi:10.1016/j.ejps.2010.05.004 PMid:20580672 32. Shabab S, Mahmoudabady M, Gholamnezhad Z, Niazmand S, Fouladi M, Emadi ZM. Endurance Exercise Prevented Diabetic Cardiomyopathy through the Inhibition of Cardiac Hypertrophy and Fibrosis in Rats. Available at SSRN 4548502. 33. Baghadam M, Azizbeidi K, Baesi K. The effect of 8 weeks aerobic training on cardiac pgc-1α and plasma irisin in stz-induced diabetics'rats. Iran J Diabetes Metab. 2019;18(5):228-35. 34. Wang SY, Zhu S, Wu J, Zhang M, Xu Y, Xu W, et al. Exercise enhances cardiac function by improving mitochondrial dysfunction and maintaining energy homoeostasis in the development of diabetic cardiomyopathy. J Mol Med. 2020;98: 245-61. doi:10.1007/s00109-019-01861-2 PMid:31897508 35. Chavanelle V, Boisseau N, Otero YF, Combaret L, Dardevet D, Montaurier C, et al. Effects of high-intensity interval training and moderate-intensity continuous training on glycaemic control and skeletal muscle mitochondrial function in db/db mice. Sci Reports. 2017;7(1):204. doi:10.1038/s41598-017-00276-8 PMid:28303003 PMCid:PMC5427962 36. Szendroedi J, Phielix E, Roden M. The role of mitochondria in insulin resistance and type 2 diabetes mellitus. Nat Rev Endocrinol. 2012;8(2):92-103. doi:10.1038/nrendo.2011.138 PMid:21912398 37. Khalafi M, Mohebbi H, Symonds ME, Karimi P, Akbari A, Tabari E, et al. The impact of moderate-intensity continuous or high-intensity interval training on adipogenesis and browning of subcutaneous adipose tissue in obese male rats. Nutrients. 2020;12(4):925. doi:10.3390/nu12040925 PMid:32230849 PMCid:PMC7231004 38. Samjoo IA, Safdar A, Hamadeh MJ, Glover AW, Mocellin NJ, Santana J, et al. Markers of skeletal muscle mitochondrial function and lipid accumulation are moderately associated with the homeostasis model assessment index of insulin resistance in obese men. PLoS One. 2013;8(6): e66322. doi:10.1371/journal.pone.0066322 PMid:23776659 PMCid:PMC3680409 39. Téglás T, Ábrahám D, Jókai M, Kondo S, Mohammadi R, Fehér J, et al. Exercise combined with a probiotics treatment alters the microbiome, but moderately affects signalling pathways in the liver of male APP/PS1 transgenic mice. Biogerontology. 2020;21:807-15. doi:10.1007/s10522-020-09895-7 PMid:32812166 PMCid:PMC7541368 40. Shirvani H, Aslani J. The effects of high-intensity interval training vs. moderate-intensity continuous training on serum irisin and expression of skeletal muscle PGC-1α gene in male rats. Tehran University Med J TUMS Publications. 2017; 75(7):513-20. 41. Hesselink MK, Schrauwen-Hinderling V, Schrauwen P. Skeletal muscle mitochondria as a target to prevent or treat type 2 diabetes mellitus. Nat Rev Endocrinol. 2016;12(11):633-45. doi:10.1038/nrendo.2016.104 PMid:27448057 42. Novelle MG, Contreras C, Romero-Picó A, López M, Diéguez C. Irisin, two years later. Int j endocrinol. 2013;2013. doi:10.1155/2013/746281 PMid:24298283 PMCid:PMC3835481 43. Scarpulla RC, Vega RB, Kelly DP. Transcriptional integration of mitochondrial biogenesis. Trends Endocrinol Metab. 2012; 23(9): 459-66. doi:10.1016/j.tem.2012.06.006 PMid:22817841 PMCid:PMC3580164
|