[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Journal Information::
Indexing Sources::
Guide for Authors::
Online Submission::
Articles archive::
For Reviewers::
Contact us::
Biochemistry and Nutrition in Metabolic Diseases
Search in website

Advanced Search
Receive site information
Enter your Email in the following box to receive the site news and information.
:: Volume 28, Issue 1 (Bimothly 2024) ::
Feyz 2024, 28(1): 1-9 Back to browse issues page
Suppression of viability and migration in a human colorectal cancer cell line, HT-29, by 7SK long non-coding RNA
Shahin Aghamiri , Shohreh Farhadi , Hossein Ghanbarian , Kazem Sharifi
Anesthesiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran , drksharifi@yahoo.com
Abstract:   (435 Views)
Background and Aim: 7SK is a long non-coding RNA that interacts with various proteins to regulate gene transcription. This study aimed to assess the impact of exosomal delivery of 7SK on viability, expression of apoptosis-related genes, and migration in the human colorectal cancer cell line HT-29.
Methods: In this experimental study, HT-29 cells were treated with exosomes derived from human umbilical cord mesenchymal stem cells loaded with 7SK (Exo-7SK). Control groups included cells treated with unloaded exosomes and untreated cells. The levels of 7SK in the cells, and expression of apoptosis-related genes were measured by real-time PCR, cell viability assessed by the MTT assay, and cell migration evaluated using the transwell assay.
Results: Treatment of HT-29 cells with Exo-7SK resulted in increased levels of 7SK, reduced viability, downregulation of the anti-apoptotic gene BCL-2, upregulation of the apoptosis-inducing gene BAX, and decreased migration.
Conclusion: Exosomal delivery of 7SK can effectively decrease the viability and migration of colorectal cancer cells. Further research is warranted to explore the therapeutic potential of this approach in colorectal cancer.
Keywords: 7SK long non-coding RNA, Colorectal cancer, Mesenchymal stem cells, Exosomes
Full-Text [PDF 812 kb]   (257 Downloads)    
Type of Study: Research | Subject: General
Received: 2023/12/12 | Revised: 2024/05/1 | Accepted: 2024/02/12 | Published: 2024/03/13
1. Roshandel G, Ferlay J, Ghanbari-Motlagh A, Partovipour E, Salavati F, Aryan K, et al. Cancer in Iran 2008 to 2025: Recent incidence trends and short-term predictions of the future burden. Int J Cancer 2021;149(3): 594-605. doi:10.1002/ijc.33574 PMid:33884608
2. Colorectal cancer: World Health Organization. Available at: https://www.who.int/news-room/fact-sheets/detail/colorectal-cancer#:~:text=Colon%20cancer%20is%20the%20second,and%20mortality%20rates%20were%20observed.
3. Nemeth K, Bayraktar R, Ferracin M, Calin GA. Non-coding RNAs in disease: from mechanisms to therapeutics. Nature Reviews Genetics 2023. doi:10.1038/s41576-023-00662-1 PMid:37968332
4. Egloff S, Studniarek C, Kiss T. 7SK small nuclear RNA, a multifunctional transcriptional regulatory RNA with gene-specific features. Transcription 2018;9(2):95-101. doi:10.1080/21541264.2017.1344346 PMid:28820318 PMCid:PMC5834218
5. Camara MB, Sobeh AM, Eichhorn CD. Progress in 7SK ribonucleoprotein structural biology. Front Mol Biosci 2023;10:1154622. doi:10.3389/fmolb.2023.1154622 PMid:37051324 PMCid:PMC10083321
6. Quaresma AJ, Bugai A, Barboric M. Cracking the control of RNA polymerase II elongation by 7SK snRNP and P-TEFb. Nucleic Acids Res 2016;44(16): 7527-39. doi:10.1093/nar/gkw585 PMid:27369380 PMCid:PMC5027500
7. Zhou Q, Li T, Price DH. RNA polymerase II elongation control. Annu Rev Biochem 2012;81:119-43. doi:10.1146/annurev-biochem-052610-095910 PMid:22404626 PMCid:PMC4273853
8. Eilebrecht S, Bécavin C, Léger H, Benecke B-J, Benecke A. HMGA1-dependent and independent 7SK RNA gene regulatory activity. RNA Biol 2011;8(1):143-57. doi:10.4161/rna.8.1.14261 PMid:21282977
9. Eilebrecht S, Brysbaert G, Wegert T, Urlaub H, Benecke B-J, Benecke A. 7SK small nuclear RNA directly affects HMGA1 function in transcription regulation. Nucleic Acids Research 2010;39(6): 2057-72. doi:10.1093/nar/gkq1153 PMid:21087998 PMCid:PMC3064786
10. Zhao L, Liu Y, Tong D, Qin Y, Yang J, Xue M, et al. MeCP2 Promotes Gastric Cancer Progression Through Regulating FOXF1/Wnt5a/β-Catenin and MYOD1/Caspase-3 Signaling Pathways. EBioMedicine 2017;16:87-100. doi:10.1016/j.ebiom.2017.01.021 PMid:28131747 PMCid:PMC5474507
11. Wang Y, Hu L, Zheng Y, Guo L. HMGA1 in cancer: Cancer classification by location. J Cell Mol Med 2019;23 (4): 2293-302. doi:10.1111/jcmm.14082 PMid:30614613 PMCid:PMC6433663
12. Ji X, Lu H, Zhou Q, Luo K. LARP7 suppresses P-TEFb activity to inhibit breast cancer progression and metastasis. eLife 2014;3:e02907. doi:10.7554/eLife.02907 PMid:25053741 PMCid:PMC4126343
13. Tan Justin L, Fogley Rachel D, Flynn Ryan A, Ablain J, Yang S, Saint-André V, et al. Stress from Nucleotide Depletion Activates the Transcriptional Regulator HEXIM1 to Suppress Melanoma. Molecular Cell 2016; 62(1):34-46. doi:10.1016/j.molcel.2016.03.013 PMid:27058786 PMCid:PMC4836061
14. Najafi N, Gharib MH, Nematollahi N, Mehravar F. Preoperative evaluation of pelvic MRI findings in patients with rectosigmoid cancer in Golestan province (north of Iran). Novel Clin Med. 2022;1(3):127-34. doi: 10.22034/ncm.2022.337938.1041
15. Abasi M, Bazi Z, Mohammadi-Yeganeh S, Soleimani M, Haghpanah V, Zargami N, et al. 7SK small nuclear RNA transcription level down-regulates in human tumors and stem cells. Med Oncol 2016;33(11):128. doi:10.1007/s12032-016-0841-x PMid:27752877
16. Zhang B, Min S, Guo Q, Huang Y, Guo Y, Liang X, et al. 7SK Acts as an Anti-tumor Factor in Tongue Squamous Cell Carcinoma. Front Genet 2021;12: 642969. doi:10.3389/fgene.2021.642969 PMid:33868377 PMCid:PMC8047107
17. Farhadi S, Mohammadi-Yeganeh S, Kiani J, Hashemi SM, Koochaki A, Sharifi K, et al. Exosomal delivery of 7SK long non-coding RNA suppresses viability, proliferation, aggressiveness and tumorigenicity in triple negative breast cancer cells. Life Sci 2023;322:121646. doi:10.1016/j.lfs.2023.121646 PMid:37011870
18. Eilebrecht S, Brysbaert G, Wegert T, Urlaub H, Benecke B-J, Benecke A. 7SK small nuclear RNA directly affects HMGA1 function in transcription regulation. Nucleic Acids Res 2011;39(6): 2057-72 doi:10.1093/nar/gkq1153 PMid:21087998 PMCid:PMC3064786
19. Grade M, Hörmann P, Becker S, Hummon AB, Wangsa D, Varma S, et al. Gene expression profiling reveals a massive, aneuploidy-dependent transcriptional deregulation and distinct differences between lymph node-negative and lymph node-positive colon carcinomas. Cancer Res 2007;67(1): 41-56. doi:10.1158/0008-5472.CAN-06-1514PMid:17210682 PMCid:PMC4721580
20. Xian L, Georgess D, Huso T, Cope L, Belton A, Chang Y-T, et al. HMGA1 amplifies Wnt signalling and expands the intestinal stem cell compartment and Paneth cell niche. Nature Communications 2017;8 (1):15008. doi:10.1038/ncomms15008 PMid:28452345 PMCid:PMC5414379
21. E MP, Liu T, Zhang X, Yang H, Wang J, Huang R, et al. High-mobility group A1 (HMGA1) gene expressions in various colorectal cancer cell lines and correlation with prognosis. Transl Cancer Res 2020; 9(2): 763-73. doi:10.21037/tcr.2019.12.10 PMid:35117422 PMCid:PMC8798761
22. Belton A, Gabrovsky A, Bae YK, Reeves R, Iacobuzio-Donahue C, Huso DL, et al. HMGA1 Induces Intestinal Polyposis in Transgenic Mice and Drives Tumor Progression and Stem Cell Properties in Colon Cancer Cells. PLOS ONE 2012; 7(1): e30034. doi:10.1371/journal.pone.0030034 PMid:22276142 PMCid:PMC3262796
23. Toden S, Zumwalt TJ, Goel A. Non-coding RNAs and potential therapeutic targeting in cancer. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer 2021;1875(1):188491. doi:10.1016/j.bbcan.2020.188491 PMid:33316377 PMCid:PMC7856203
24. Camara MB, Sobeh AM, Eichhorn CD. Progress in 7SK ribonucleoprotein structural biology. 2023;10. doi:10.3389/fmolb.2023.1154622 PMid:37051324 PMCid:PMC10083321
25. Lu Y, Huang W, Li M, Zheng A. Exosome-Based Carrier for RNA Delivery: Progress and Challenges. Pharmaceutics 2023;15(2). doi:10.3390/pharmaceutics15020598 PMid:36839920 PMCid:PMC9964211
26. Yang Z, Shi J, Xie J, Wang Y, Sun J, Liu T, et al. Large-scale generation of functional mRNA-encapsulating exosomes via cellular nanoporation. Nature Biomedical Engineering 2020;4(1):69-83. doi:10.1038/s41551-019-0485-1 PMid:31844155 PMCid:PMC7080209
27. Zeng H, Guo S, Ren X, Wu Z, Liu S, Yao X. Current Strategies for Exosome Cargo Loading and Targeting Delivery. Cells. 2023; 12(10). doi:10.3390/cells12101416 PMid:37408250 PMCid:PMC10216928
28. Khazaei-Poul Y, Shojaei S, Koochaki A, Ghanbarian H, Mohammadi-Yeganeh S. Evaluating the influence of Human Umbilical Cord Mesenchymal Stem Cells-derived exosomes loaded with miR-3182 on metastatic performance of Triple Negative Breast Cancer cells. Life Sci 2021;286: 120015. doi:10.1016/j.lfs.2021.120015 PMid:34614416
29. Rezaei-Tazangi F, Alidadi H, Samimi A, Karimi S, Kahorsandi L. Effects of Wharton's jelly mesenchymal stem cells-derived secretome on colon carcinoma HT-29 cells. Tissue Cell 2020;67:101413. doi:10.1016/j.tice.2020.101413 PMid:32835945
30. Jahangiri B, Khalaj-Kondori M, Asadollahi E, Purrafee Dizaj L, Sadeghizadeh M. MSC-Derived exosomes suppress colorectal cancer cell proliferation and metastasis via miR-100/mTOR/miR-143 pathway. Int J Pharm 2022; 627: 122214. doi:10.1016/j.ijpharm.2022.122214 PMid:36152993
31. Wu XB, Liu Y, Wang G-H, Xu X, Cai Y, Wang H-Y, et al. Mesenchymal stem cells promote colorectal cancer progression through AMPK/mTOR-mediated NF-κB activation. Sci Rep 2016;6(1):21420. doi:10.1038/srep21420 PMid:26892992 PMCid:PMC4759824
32. Li H, Li F. Exosomes from BM-MSCs increase the population of CSCs via transfer of miR-142-3p. Br J Cancer 2018;119(6):744-55. doi:10.1038/s41416-018-0254-z PMid:30220706 PMCid:PMC6173771
33. Wu S, Ju GQ, Du T, Zhu YJ, Liu GH. Microvesicles derived from human umbilical cord Wharton's jelly mesenchymal stem cells attenuate bladder tumor cell growth in vitro and in vivo. PLoS One 2013;8(4):e61366. doi:10.1371/journal.pone.0061366 PMid:23593475 PMCid:PMC3625149
34. Li D, Lin F, Li G, Zeng F. Exosomes derived from mesenchymal stem cells curbs the progression of clear cell renal cell carcinoma through T-cell immune response. Cytotechnology 2021; 73(4):593-604.doi:10.1007/s10616-021-00480-5 PMid:34349349 PMCid:PMC8319245
35. Zhao X, Wu X, Qian M, Song Y, Wu D, Zhang W. Knockdown of TGF-β1 expression in human umbilical cord mesenchymal stem cells reverts their exosome-mediated EMT promoting effect on lung cancer cells. Cancer Lett 2018;428:34-44. doi:10.1016/j.canlet.2018.04.026 PMid:29702191
36. Zhou X, Li T, Chen Y, Zhang N, Wang P, Liang Y, et al. Mesenchymal stem cell derived extracellular vesicles promote the in vitro proliferation and migration of breast cancer cells through the activation of the ERK pathway. Int J Oncol 2019;54(5):1843-52. doi:10.3892/ijo.2019.4747 PMid:30864702
37. Du L, Tao X, Shen X. Human umbilical cord mesenchymal stem cell-derived exosomes inhibit migration and invasion of breast cancer cells via miR-21-5p/ZNF367 pathway. Breast Cancer 2021; 28(4):829-37. doi:10.1007/s12282-021-01218-z PMid:33770377
Send email to the article author

Add your comments about this article
Your username or Email:


XML   Persian Abstract   Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Aghamiri S, Farhadi S, Ghanbarian H, Sharifi K. Suppression of viability and migration in a human colorectal cancer cell line, HT-29, by 7SK long non-coding RNA. Feyz 2024; 28 (1) :1-9
URL: http://feyz.kaums.ac.ir/article-1-5062-en.html

Creative Commons License
This open access journal is licensed under a Creative Commons Attribution-NonCommercial ۴.۰ International License. CC BY-NC ۴. Design and publishing by Kashan University of Medical Sciences.
Copyright ۲۰۲۳© Feyz Medical Sciences Journal. All rights reserved.
Volume 28, Issue 1 (Bimothly 2024) Back to browse issues page
مجله علوم پزشکی فیض Feyz Medical Sciences Journal
Persian site map - English site map - Created in 0.05 seconds with 45 queries by YEKTAWEB 4657