[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Indexing Sources::
Guide for Authors::
Online Submission::
Ethics::
Articles archive::
For Reviewers::
Contact us::
AI::
::
Basic and Clinical Biochemistry and Nutrition
..
DOAJ
..
CINAHL
..
EBSCO
..
IMEMR
..
ISC
..
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
enamad
..
:: Volume 29, Issue 1 (Bimonthly 2025) ::
Feyz Med Sci J 2025, 29(1): 93-108 Back to browse issues page
A review of the role of inflammatory factors and exercise in muscle atrophy: emphasis on obesity and metabolic diseases
Mansoureh Karimi * , Masome Nobahar
Department of Human Sciences and Exercise Physiology, Faculty of Sport Sciences, University of Gonbad Kavouse, Golestan, Iran , mansourehkarimi@gonbad.ac.ir
Abstract:   (464 Views)
This narrative review aims to examine the relationship between obesity, fat accumulation, and the physiological pathways involved in the development of muscle atrophy. Ectopic lipid accumulation in organs can affect peripheral insulin sensitivity and contribute to reduced muscle mass. Insulin resistance (IR) and muscle mass loss frequently coexist in individuals with type 2 diabetes mellitus (T2DM). Most individuals with T2DM are overweight, and there are ample scientific evidence supporting the role of obesity and disrupted lipid metabolism in the development of insulin resistance.
In such conditions, altered liver secretions, mitochondrial dysfunction, and impaired insulin signaling in skeletal muscle are among the key metabolic consequences. Therefore, obesity and adipose tissue dysfunction may lead to muscle atrophy, while muscle atrophy can further aggravate insulin resistance. In other words, IR and muscle atrophy are interconnected and mutually reinforcing outcomes of a broader metabolic syndrome.
Although previous studies have explored the links between lipid accumulation, T2DM, and muscle atrophy, it remains unclear whether changes in muscle mass result directly from decreased insulin sensitivity or occur independently. It is possible that insulin resistance is merely a reflection of obesity, and that muscle loss is directly influenced by increased lipid availability. Therefore, to better understand the role of inflammatory factors in obesity- and diabetes-induced muscle atrophy, and in light of conflicting findings on the anti-inflammatory effects of exercise, further research is warranted.
Keywords: Inflammatory factors, Muscle atrophy, Insulin resistance, Type 2 diabetes, Exercise
Full-Text [PDF 665 kb]   (116 Downloads)    
Type of Study: Review | Subject: medicine, paraclinic
Received: 2025/01/4 | Revised: 2025/04/28 | Accepted: 2025/02/9 | Published: 2025/04/22
References
1. Ong KL, Stafford LK, McLaughlin SA, Boyko EJ, Vollset SE, Smith AE, et al. Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: a systematic analysis for the Global Burden of Disease Study 2021. Lancet. 2023; 402(10397): 203-34. doi:10.1016/S0140-6736(23)01301-6
2. Karimi M, Saghebjoo M, Sarir H, Hedayati M. Exercise Training, Plasma Levels of Branched-Chain Amino Acids, and Insulin Resistance in Metabolic Diseases: A Narrative Review. Iran J Endocrinol Metab. 2023; 25 (2).
3. Cho NH, Shaw JE, Karuranga S, Huang Y, da Rocha Fernandes JD, Ohlrogge A, et al. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract. 2018;138:271-81. doi:10.1016/j.diabres.2018.02.023
4. Leenders M, Verdijk LB, van der Hoeven L, Adam JJ, Van Kranenburg J, Nilwik R, et al. Patients with type 2 diabetes show a greater decline in muscle mass, muscle strength, and functional capacity with aging. JAMDA. 2013;14(8):585-92. doi:10.1016/j.jamda.2013.02.006
5. Guerrero N, Bunout D, Hirsch S, Barrera G, Leiva L, Henríquez S, et al. Premature loss of muscle mass and function in type 2 diabetes. Diabetes Res Clin Pract. 2016;117:32-8. doi:10.1016/j.diabres.2016.04.011
6. Meex RC, Blaak EE, van Loon LJ. Lipotoxicity plays a key role in the development of both insulin resistance and muscle atrophy in patients with type 2 diabetes. Obes Rev. 2019;20(9):1205-17. doi:10.1111/obr.12862
7. Kim TN, Park MS, Yang SJ, Yoo HJ, Kang HJ, Song W, et al. Prevalence and determinant factors of sarcopenia in patients with type 2 diabetes: the Korean Sarcopenic Obesity Study (KSOS). Diabetes Care. 2010;33(7):1497-9. doi:10.2337/dc09-2310
8. Park SW, Goodpaster BH, Strotmeyer ES, Kuller LH, Broudeau R, Kammerer C, et al. Accelerated loss of skeletal muscle strength in older adults with type 2 diabetes: the health, aging, and body composition study. Diabetes Care. 2007;30(6):1507-12. doi:10.2337/dc06-2537
9. Kalyani RR, Saudek CD, Brancati FL, Selvin E. Association of diabetes, comorbidities, and A1C with functional disability in older adults: results from the National Health and Nutrition Examination Survey (NHANES), 1999-2006. Diabetes Care. 2010; 33(5): 1055-60. doi:10.2337/dc09-1597
10. Landi F, Liperoti R, Russo A, Giovannini S, Tosato M, Capoluongo E, et al. Sarcopenia as a risk factor for falls in elderly individuals: results from the ilSIRENTE study. Clin Nutr. 2012;31(5):652-8. doi:10.1016/j.clnu.2012.02.007
11. Ulley J, Abdelhafiz AH. Frailty predicts adverse outcomes in older people with diabetes. Practitioner. 2017;261(1800):17-20.
12. Weng W, Tian Y, Kimball ES, Kong SX, Bouchard J, Hobbs TM, et al. Treatment patterns and clinical characteristics of patients with type 2 diabetes mellitus according to body mass index: findings from an electronic medical records database.BMJ Open Diabetes Res Care. 2017;5(1):e000382. doi:10.1136/bmjdrc-2016-000382
13. Hirose H, Takayama M, Iwao Y, Kawabe H. Effects of aging on visceral and subcutaneous fat areas and on homeostasis model assessment of insulin resistance and insulin secretion capacity in a comprehensive health checkup. J Atheroscler Thromb. 2016;23(2):207-15. doi:10.5551/jat.30700
14. Cartwright MJ, Tchkonia T, Kirkland JL. Aging in adipocytes: potential impact of inherent, depot-specific mechanisms. Exp Gerontol. 2007;42(6):463-71. doi:10.1016/j.exger.2007.03.003
15. Zoico E, Rossi A, Di Francesco V, Sepe A, Olioso D, Pizzini F, et al. Adipose tissue infiltration in skeletal muscle of healthy elderly men: relationships with body composition, insulin resistance, and inflammation at the systemic and tissue level. J Gerontol A Biol Sci Med Sci. 2010;65(3):295-9. doi:10.1093/gerona/glp155
16. Cree MG, Newcomer BR, Katsanos CS, Sheffield-Moore M, Chinkes D, Aarsland A, et al. Intramuscular and liver triglycerides are increased in the elderly. J Clin Endocrinol Metab. 2004; 89(8): 3864-71. doi:10.1210/jc.2003-031986
17. Karimi M, Saghebjoo M, Sarir H, Hedayati M. Skeletal muscle metabolomics analysis after high-intensity interval training in rats fed a high-fat diet. Daneshv Med Basic Clin Res J. 2024; 31(5):76-91.
18. Heber D, Ingles S, Ashley JM, Maxwell MH, Lyons RF, Elashoff RM. Clinical detection of sarcopenic obesity by bioelectrical impedance analysis. Am J Clin Nutr. 1996;64(3):472S-7S. doi:10.1093/ajcn/64.3.472S
19. Li Cw, Yu K, Shyh‐Chang N, Jiang Z, Liu T, Ma S, et al. Pathogenesis of sarcopenia and the relationship with fat mass: descriptive review. J Cachexia Sarcopenia Muscle. 2022;13(2):781-94. doi:10.1002/jcsm.12901
20. Terada T, Boulé NG, Forhan M, Prado CM, Kenny GP, Prud'homme D, et al. Cardiometabolic risk factors in type 2 diabetes with high fat and low muscle mass: at baseline and in response to exercise. Obesity (Silver Spring). 2017;25(5):881-91. doi:10.1002/oby.21808
21. Kim TN, Choi KM. The implications of sarcopenia and sarcopenic obesity on cardiometabolic disease. J Cell Biochem. 2015;116(7):1171-8. doi:10.1002/jcb.25077
22. Son JW, Lee SS, Kim SR, Yoo SJ, Cha BY, Son HY, et al. Low muscle mass and risk of type 2 diabetes in middle-aged and older adults: findings from the KoGES. Diabetologia. 2017;60(5):865-72. doi:10.1007/s00125-016-4196-9
23. Srikanthan P, Hevener AL, Karlamangla AS. Sarcopenia exacerbates obesity-associated insulin resistance and dysglycemia: findings from the National Health and Nutrition Examination Survey III. PloS One. 2010;5(5):e10805. doi:10.1371/journal.pone.0010805
24. Hargreaves M, Spriet LL. Skeletal muscle energy metabolism during exercise. Nat Metab. 2020;2(9):817-28. doi:10.1038/s42255-020-0251-4
25. Karakelides H, Nair KS. Sarcopenia of aging and its metabolic impact. Cur Top Dev Biol. 2005;68:123-48. doi:10.1016/S0070-2153(05)68005-2
26. Huang LY, Liu CH, Chen FY, Kuo CH, Pitrone P, Liu JS. Aging affects insulin resistance, insulin secretion, and glucose effectiveness in subjects with normal blood glucose and body weight. Diagnostics (Basel). 2023;13(13):2158. doi:10.3390/diagnostics13132158
27. Boston RC, Stefanovski D, Moate PJ, Sumner AE, Watanabe RM, Bergman RN. MINMOD Millennium: a computer program to calculate glucose effectiveness and insulin sensitivity from the frequently sampled intravenous glucose tolerance test. Diabetes Technol Ther. 2003;5(6):1003-15. doi:10.1089/152091503322641060
28. Best JD, Kahn SE, Ader M, Watanabe RM, Ni TC, Bergman RN. Role of glucose effectiveness in the determination of glucose tolerance. Diabetes Care. 1996;19(9):1018-30. doi:10.2337/diacare.19.9.1018
29. Thoma A, Lightfoot AP. NF-kB and inflammatory cytokine signalling: role in skeletal muscle atrophy. Adv Exp Med Biol. 2018; 267-279. doi:10.1007/978-981-13-1435-3_12
30. Zahedi AS, Daneshpour MS, Akbarzadeh M, Hedayati M, Azizi F, Zarkesh M. Association of baseline and changes in adiponectin, homocysteine, high-sensitivity C-reactive protein, interleukin-6, and interleukin-10 levels and metabolic syndrome incidence: Tehran lipid and glucose study. Heliyon. 2023;9(9). doi:10.1016/j.heliyon.2023.e19911
31. Koo HS, Kim MJ, Kim KM, Kim YS. Decreased muscle mass is not an independent risk factor for metabolic syndrome in Korean population aged 70 or older. Clin Endocrinol. 2015;82(4):509-16. doi:10.1111/cen.12509
32. Wang ST, Lin YK, Weng SF, Huang CL, Huang HC, Chiu YC, et al. Skeletal muscle ratio: a complete mediator of physical activity and HbA1C in type 2 diabetes. Biol Res Nurs. 2020; 22(4): 536-43. doi:10.1177/1099800420942884
33. Yang Q, Zhang Y, Zeng Q, Yang C, Shi J, Zhang C, et al. Correlation between diabetic peripheral neuropathy and sarcopenia in patients with type 2 diabetes mellitus and diabetic foot disease: a cross-sectional study. Diabetes, Metab Syndr Obes. 2020; 377-386. doi:10.2147/DMSO.S237362
34. Workeneh B, Bajaj M. The regulation of muscle protein turnover in diabetes. Int J Biochem Cell Biol. 2013;45(10):2239-44. doi:10.1016/j.biocel.2013.06.028
35. Lee CG, Boyko EJ, Strotmeyer ES, Lewis CE, Cawthon PM, Hoffman AR, et al. Association between insulin resistance and lean mass loss and fat mass gain in older men without diabetes mellitus. J Am Geriatr Soc . 2011;59(7):1217-24. doi:10.1111/j.1532-5415.2011.03472.x
36. Pupim LB, Heimburger O, Qureshi AR, Ikizler TA, Stenvinkel P. Accelerated lean body mass loss in incident chronic dialysis patients with diabetes mellitus. Kidney int. 2005;68(5):2368-74. doi:10.1111/j.1523-1755.2005.00699.x
37. Ferrari U, Then C, Rottenkolber M, Selte C, Seissler J, Conzade R, et al. Longitudinal association of type 2 diabetes and insulin therapy with muscle parameters in the KORA-Age study. Acta Diabetol. 2020; 57:1057-63. doi:10.1007/s00592-020-01523-7
38. Kalyani RR, Metter EJ, Egan J, Golden SH, Ferrucci L. Hyperglycemia predicts persistently lower muscle strength with aging. Diabetes Care. 2015;38(1):82-90. doi:10.2337/dc14-1166
39. Andreassen CS, Jakobsen J, Ringgaard S, Ejskjaer N, Andersen H. Accelerated atrophy of lower leg and foot muscles-a follow-up study of long-term diabetic polyneuropathy using magnetic resonance imaging (MRI). Diabetologia. 2009;52:1182-91. doi:10.1007/s00125-009-1320-0
40. Gatineau E, Savary-Auzeloux I, Migné C, Polakof S, Dardevet D, Mosoni L. Chronic intake of sucrose accelerates sarcopenia in older male rats through alterations in insulin sensitivity and muscle protein synthesis. J Nutr. 2015;145(5):923-30. doi:10.3945/jn.114.205583
41. Giannarelli R, Aragona M, Coppelli A, Del Prato S. Reducing insulin resistance with metformin: the evidence today. Diabetes Metab. 2003; 29(4):6S28-35. doi:10.1016/S1262-3636(03)72785-2
42. Jahn LA, Hartline L, Liu Z, Barrett EJ. Metformin improves skeletal muscle microvascular insulin resistance in metabolic syndrome. Am J Physiol Endocrinol Metab. 2022;322(2):E173-E80. doi:10.1152/ajpendo.00287.2021
43. Stephens FB, Chee C, Wall BT, Murton AJ, Shannon CE, Van Loon LJ, et al. Lipid-induced insulin resistance is associated with an impaired skeletal muscle protein synthetic response to amino acid ingestion in healthy young men. Diabete. 2015; 64(5):1615-20. doi:10.2337/db14-0961
44. Christian CJ, Benian GM. Animal models of sarcopenia. Aging Cell. 2020;19(10):e13223. doi:10.1111/acel.13223
45. Sartori R, Romanello V, Sandri M. Mechanisms of muscle atrophy and hypertrophy: implications in health and disease. Nat Commun. 2021;12(1):330. doi:10.1038/s41467-020-20123-1
46. Vainshtein A, Sandri M. Signaling pathways that control muscle mass. Int J Mol Sci. 2020; 21(13): 4759. doi:10.3390/ijms21134759
47. Voulgaridou G, Papadopoulou SD, Spanoudaki M, Kondyli FS, Alexandropoulou I, Michailidou S, et al. Increasing muscle mass in elders through diet and exercise: a literature review of recent RCTs. Foods. 2023; 12(6):1218. doi:10.3390/foods12061218
48. Mitchell WK, Wilkinson DJ, Phillips BE, Lund JN, Smith K, Atherton PJ. Human skeletal muscle protein metabolism responses to amino acid nutrition. Adv Nut. 2016; 7(4): 828S-38S. doi:10.3945/an.115.011650
49. Ato S, Matsunami H, Ogasawara R. Aging is associated with impaired postprandial response of skeletal muscle protein synthesis to high-intensity muscle contraction in mice. J Gerontol: Series A. 2023; 78(4): 587-95. doi:10.1093/gerona/glad014
50. Ponti F, Santoro A, Mercatelli D, Gasperini C, Conte M, Martucci M, et al. Aging and imaging assessment of body composition: from fat to facts. Front Endocrinol. 2020;10:861. doi:10.3389/fendo.2019.00861
51. Rabadán-Chávez G, de la Garza RID, Jacobo-Velázquez DA. White adipose tissue: Distribution, molecular insights of impaired expandability, and its implication in fatty liver disease. Biochim Biophys Acta Mol Basis Dis. 2023; 1869(8):166853. doi:10.1016/j.bbadis.2023.166853
52. Romero A, Eckel J. Organ crosstalk and the modulation of insulin signaling. Cell J. 2021; 10(8): 2082. doi:10.3390/cells10082082
53. 53. Sabaratnam R, Wojtaszewski JF, Højlund K. Factors mediating exercise‐induced organ crosstalk. Acta Physiol. 2022; 234(2): e13766. doi:10.1111/apha.13766
54. Ren Y, Zhao H, Yin C, Lan X, Wu L, Du X, et al. Adipokines, hepatokines and myokines: focus on their role and molecular mechanisms in adipose tissue inflammation. Front Endocrinol. 2022; 13: 873699. doi:10.3389/fendo.2022.873699
55. Chen S, Saeed AF, Liu Q, Jiang Q, Xu H, Xiao GG, et al. Macrophages in immunoregulation and therapeutics. Curr Signal Transduct Ther. 2023; 8(1): 207. doi:10.1038/s41392-023-01452-1
56. Shaikh PZ. Cytokines & their physiologic and pharmacologic functions in inflammation: A review. IJPLS. 2011;2(11).
57. Ribeiro JC, Duarte JG, Gomes GA, Costa-Guarisco LP, de Jesus IT, Nascimento CM, et al. Associations between inflammatory markers and muscle strength in older adults according to the presence or absence of obesity. Exp Gerontol. 2021; 151: 111409. doi:10.1016/j.exger.2021.111409
58. Alizadeh Pahlavani H. Exercise therapy for people with sarcopenic obesity: myokines and adipokines as effective actors. Front Endocrinol. 2022; 13:811751. doi:10.3389/fendo.2022.811751
59. Giardullo L, Corrado A, Maruotti N, Cici D, Mansueto N, Cantatore FP. Adipokine role in physiopathology of inflammatory and degenerative musculoskeletal diseases. Int J Pharmacol. 2021; 35: 20587384211015034. doi:10.1177/20587384211015034
60. Peris-Moreno D, Cussonneau L, Combaret L, Polge C, Taillandier D. Ubiquitin ligases at the heart of skeletal muscle atrophy control. Molecules. 2021; 26(2): 407. doi:10.3390/molecules26020407
61. Bodine SC, Baehr LM. Skeletal muscle atrophy and the E3 ubiquitin ligases MuRF1 and MAFbx/atrogin-1. Am J Physiol Cell Physiol. 2014; 307(6): E469-E84. doi:10.1152/ajpendo.00204.2014
62. Pellegrinelli V, Rouault C, Rodriguez-Cuenca S, Albert V, Edom-Vovard F, Vidal-Puig A, et al. Human adipocytes induce inflammation and atrophy in muscle cells during obesity. Diabete J. 2015; 64(9): 3121-34. doi:10.2337/db14-0796
63. Yang HM, Kim J, Shin D, Kim JY, You J, Lee H-C, et al. Resistin impairs mitochondrial homeostasis via cyclase-associated protein 1-mediated fission, leading to obesity-induced metabolic diseases. Metab. 2023; 138: 155343. doi:10.1016/j.metabol.2022.155343
64. Saatmann N, Schön M, Zaharia OP, Huttasch M, Strassburger K, Trenkamp S, et al. Association of thyroid function with non‐alcoholic fatty liver disease in recent‐onset diabetes. Liver Int. 2024; 44(1): 27-38. doi:10.1111/liv.15723
65. Geng Y, Faber KN, de Meijer VE, Blokzijl H, Moshage H. How does hepatic lipid accumulation lead to lipotoxicity in non-alcoholic fatty liver disease? Hepatol Inte. 2021; 15: 21-35. doi:10.1007/s12072-020-10121-2
66. Pal SC, Méndez-Sánchez N. Insulin resistance and adipose tissue interactions as the cornerstone of metabolic (dysfunction)-associated fatty liver disease pathogenesis. WJG. 2023; 29(25): 3999. doi:10.3748/wjg.v29.i25.3999
67. Van Sloten TT, Savelberg HH, Duimel-Peeters IG, Meijer K, Henry RM, Stehouwer CD, et al. Peripheral neuropathy, decreased muscle strength and obesity are strongly associated with walking in persons with type 2 diabetes without manifest mobility limitations. Diabetes Res Clin Pract. 2011; 91(1): 32-9. doi:10.1016/j.diabres.2010.09.030
68. Hua F. New insights into diabetes mellitus and its complications: a narrative review. Ann Transl Med. 2020;8(24). doi:10.21037/atm-20-7243
69. Pasmans K, Adriaens ME, Olinga P, Langen R, Rensen SS, Schaap FG, et al. Hepatic steatosis contributes to the development of muscle atrophy via inter-organ crosstalk. Front Endocrinol. 2021; 12: 733625. doi:10.3389/fendo.2021.733625
70. Schaap LA, Pluijm SM, Deeg DJ, Visser M. Inflammatory markers and loss of muscle mass (sarcopenia) and strength. Am J Med. 2006; 119(6): 526. e9-. e17. doi:10.1016/j.amjmed.2005.10.049
71. Held NM, Wefers J, van Weeghel M, Daemen S, Hansen J, Vaz FM, et al. Skeletal muscle in healthy humans exhibits a day-night rhythm in lipid metabolism. Mol Metab. 2020;37:100989. doi:10.1016/j.molmet.2020.100989
72. Lara-Castro C, Garvey WT. Intracellular lipid accumulation in liver and muscle and the insulin resistance syndrome. Endocrinol Metab Clin North Am. 2008; 37(4): 841-56. doi:10.1016/j.ecl.2008.09.002
73. Turpin S, Ryall JG, Southgate R, Darby I, Hevener A, Febbraio MA, et al. Examination of 'lipotoxicity'in skeletal muscle of high‐fat fed and ob/ob mice. Physiol J. 2009; 587(7): 1593-605. doi:10.1113/jphysiol.2008.166033
74. Amati F. Revisiting the diacylglycerol‐induced insulin resistance hypothesis. Obesity Rev. 2012; 13: 40-50. doi:10.1111/j.1467-789X.2012.01036.x
75. Perreault L, Newsom SA, Strauss A, Kerege A, Kahn DE, Harrison KA, et al. Intracellular localization of diacylglycerols and sphingolipids influences insulin sensitivity and mitochondrial function in human skeletal muscle. JCI Insight. 2018; 3(3). doi:10.1172/jci.insight.96805
76. Lee H, Ha TY, Jung CH, Nirmala FS, Park SY, Huh YH, et al. Mitochondrial dysfunction in skeletal muscle contributes to the development of acute insulin resistance in mice. J Cachexia Sarcopenia Muscle. 2021;12(6):1925-39. doi:10.1002/jcsm.12794
77. Zheng L, Rao Z, Guo Y, Chen P, Xiao W. High-intensity interval training restores glycolipid metabolism and mitochondrial function in skeletal muscle of mice with type 2 diabetes. Front Endocrinol. 2020;11:561. doi:10.3389/fendo.2020.00561
78. Kelley DE, He J, Menshikova EV, Ritov VB. Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabete J. 2002; 51(10): 2944-50. doi:10.2337/diabetes.51.10.2944
79. Qiu Y, Gan M, Wang X, Liao T, Chen Q, Lei Y, et al. The global perspective on peroxisome proliferator-activated receptor γ (PPARγ) in ectopic fat deposition: A review. Int J Biol Macromol. 2023; 127042. doi:10.1016/j.ijbiomac.2023.127042
80. Leduc-Gaudet JP, Picard M, Pelletier FS-J, Sgarioto N, Auger M-J, Vallée J, et al. Mitochondrial morphology is altered in atrophied skeletal muscle of aged mice. Oncotarget. 2015;6(20):17923. doi:10.18632/oncotarget.4235
81. Alway SE, Paez HG, Pitzer CR. The role of mitochondria in mediation of skeletal muscle repair. Muscles. 2023; 2(2):119-63. doi:10.3390/muscles2020011
82. Perry BD, Caldow MK, Brennan-Speranza TC, Sbaraglia M, Jerums G, Garnham A, et al. Muscle atrophy in patients with Type 2 Diabetes Mellitus: roles of inflammatory pathways, physical activity and exercise. ExercImmunol Rev. 2016; 22:94.
83. Shen L, Meng X, Zhang Z, Wang T. Physical exercise for muscle atrophy. Muscle atrophy. 2018:529-45. doi:10.1007/978-981-13-1435-3_24
84. Hodgson H, Wilkinson M, Bowen S, Giannoudis P, Howard A. Older adults are not more susceptible to acute muscle atrophy after immobilisation compared to younger adults: a systematic review. Eur J Trauma Emerg Surg. 2022;48(2):1167-76. doi:10.1007/s00068-021-01694-0
85. Dirks ML, Wall BT, Nilwik R, Weerts DH, Verdijk LB, Van Loon LJ. Skeletal muscle disuse atrophy is not attenuated by dietary protein supplementation in healthy older men. J Nutr. 2014; 144(8):1196-203. doi:10.3945/jn.114.194217
86. Goodpaster BH, He J, Watkins S, Kelley DE. Skeletal muscle lipid content and insulin resistance: evidence for a paradox in endurance-trained athletes. J Clin Endocrinol Metab. 2001; 86(12):5755-61. doi:10.1210/jcem.86.12.8075
87. Tarnopolsky MA, Rennie CD, Robertshaw HA, Fedak-Tarnopolsky SN, Devries MC, Hamadeh MJ. Influence of endurance exercise training and sex on intramyocellular lipid and mitochondrial ultrastructure, substrate use, and mitochondrial enzyme activity. Am J Physiol Regul Integr Comp Physio. 2007;292(3):R1271-R8. doi:10.1152/ajpregu.00472.2006
88. Van Loon LJ, Koopman R, Manders R, van der Weegen W, van Kranenburg GP, Keizer HA. Intramyocellular lipid content in type 2 diabetes patients compared with overweight sedentary men and highly trained endurance athletes. Am J Physiol Endocrinol Metab. 2004;287 (3):E558-E65. doi:10.1152/ajpendo.00464.2003
89. Zacharewicz E, Hesselink M, Schrauwen P. Exercise counteracts lipotoxicity by improving lipid turnover and lipid droplet quality. J Intern Med. 2018;284(5):505-18. doi:10.1111/joim.12729
90. Meex RC, Schrauwen-Hinderling VB, Moonen-Kornips E, Schaart G, Mensink M, Phielix E, et al. Restoration of muscle mitochondrial function and metabolic flexibility in type 2 diabetes by exercise training is paralleled by increased myocellular fat storage and improved insulin sensitivity. Diabete J. 2010; 59(3):572-9. doi:10.2337/db09-1322
91. Hickner R, Racette S, Binder E, Fisher J, Kohrt W. Effects of 10 days of endurance exercise training on the suppression of whole body and regional lipolysis by insulin. J Clin Endocrinol Metab. 2000;85(4):1498-504.doi:10.1210/jc.85.4.1498
92. Brouwers B, Schrauwen-Hinderling VB, Jelenik T, Gemmink A, Sparks LM, Havekes B, et al. Exercise training reduces intrahepatic lipid content in people with and people without nonalcoholic fatty liver. Am J Physiol Endocrinol Metab. 2018; 314(2):E165-E73. doi:10.1152/ajpendo.00266.2017
93. Wc K. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002; 346:393-403. doi:10.1056/NEJMoa012512
94. Ruegsegger GN, Pataky MW, Simha S, Robinson MM, Klaus KA, Nair KS. High-intensity aerobic, but not resistance or combined, exercise training improves both cardiometabolic health and skeletal muscle mitochondrial dynamics. J Appl Physiol. 2023;135(4):763-74. doi:10.1152/japplphysiol.00405.2023
95. Sun R, Wan J, Tang J, Deng Y, Zhang M, Liu C, et al. Effectiveness of Resistance Training on body composition, muscle strength, and biomarker in Sarcopenic Older Adults: A Meta-Analysis of randomized controlled trials. Arch Gerontol Geriatr. 2024; 105595. doi:10.1016/j.archger.2024.105595
96. Van Tienen F, Praet SF, De Feyter H, Van Den Broek N, Lindsey P, Schoonderwoerd K, et al. Physical activity is the key determinant of skeletal muscle mitochondrial function in type 2 diabetes. J Clin Endocrinol Metab. 2012;97(9):3261-9. doi:10.1210/jc.2011-3454
97. Sigal RJ, Kenny GP, Boulé NG, Wells GA, Prud'homme D, Fortier M, et al. Effects of aerobic training, resistance training, or both on glycemic control in type 2 diabetes: a randomized trial. Ann Intern Med. 2007;147(6):357-69. doi:10.7326/0003-4819-147-6-200709180-00005
98. Penn L, White M, Lindström J, den Boer AT, Blaak E, Eriksson JG, et al. Importance of weight loss maintenance and risk prediction in the prevention of type 2 diabetes: analysis of European Diabetes Prevention Study RCT. PloS One. 2013;8(2):e57143. doi:10.1371/journal.pone.0057143
99. Zhao X, An X, Yang C, Sun W, Ji H, Lian F. The crucial role and mechanism of insulin resistance in metabolic disease. Front Endocrinol. 2023; 14: 1149239. doi:10.3389/fendo.2023.1149239
100. Nilwik R, Snijders T, Leenders M, Groen BB, van Kranenburg J, Verdijk LB, et al. The decline in skeletal muscle mass with aging is mainly attributed to a reduction in type II muscle fiber size. Exp gerontol. Exp Gerontol. 2013; 48(5): 492-8. doi:10.1016/j.exger.2013.02.012
101. Toledo FG, Menshikova EV, Azuma K, Radiková Z, Kelley CA, Ritov VB, et al. Mitochondrial capacity in skeletal muscle is not stimulated by weight loss despite increases in insulin action and decreases in intramyocellular lipid content. Diabete J. 2008;57(4):987-94. doi:10.2337/db07-1429
102. Devries MC, Breen L, Von Allmen M, MacDonald MJ, Moore DR, Offord EA, et al. Low‐load resistance training during step‐reduction attenuates declines in muscle mass and strength and enhances anabolic sensitivity in older men. Physiol Rep. 2015; 3(8):e12493. doi:10.14814/phy2.12493
103. Bamman MM, Clarke MS, Feeback DL, Talmadge RJ, Stevens BR, Lieberman SA, et al. Impact of resistance exercise during bed rest on skeletal muscle sarcopenia and myosin isoform distribution. J Appl physiol. 1998;84(1):157-63. doi:10.1152/jappl.1998.84.1.157
104. Hassan BH, Hewitt J, Keogh JW, Bermeo S, Duque G, Henwood TR. Impact of resistance training on sarcopenia in nursing care facilities: A pilot study. J Geriatr nurs. 2016;37(2):116-21. doi:10.1016/j.gerinurse.2015.11.001
105. Stewart V, Saunders D, Greig C. Responsiveness of muscle size and strength to physical training in very elderly people: a systematic review. Scand J Med Sci Sports. 2014; 24(1): e1-e10. doi:10.1111/sms.12123
106. Baker BS, Weitzel KJ, Royse LA, Miller K, Guess TM, Ball SD, et al. Efficacy of an 8-week resistance training program in older adults: a randomized controlled trial. JAPA. 2020;29(1):121-9. doi:10.1123/japa.2020-0078
107. Burd NA, West DW, Staples AW, Atherton PJ, Baker JM, Moore DR, et al. Low-load high volume resistance exercise stimulates muscle protein synthesis more than high-load low volume resistance exercise in young men. PloS One. 2010; 5(8): e12033. doi:10.1371/journal.pone.0012033
108. Breen L, Stokes KA, Churchward-Venne TA, Moore DR, Baker SK, Smith K, et al. Two weeks of reduced activity decreases leg lean mass and induces "anabolic resistance" of myofibrillar protein synthesis in healthy elderly. J Clin Endocrinol Metab. 2013; 98(6): 2604-12. doi:10.1210/jc.2013-1502
109. Murphy J, Chevalier S, Gougeon R, Goulet ÉD, Morais JA. Effect of obesity and type 2 diabetes on protein anabolic response to insulin in elderly women. Exp Gerontol. 2015;69:20-6. doi:10.1016/j.exger.2015.06.008
110. Pennings B, Groen B, de Lange A, Gijsen AP, Zorenc AH, Senden JM, et al. Amino acid absorption and subsequent muscle protein accretion following graded intakes of whey protein in elderly men. Am J Physiol Endocrinol Metab. 2012;302(8):E992-E9. doi:10.1152/ajpendo.00517.2011
111. Wall BT, Hamer HM, de Lange A, Kiskini A, Groen BB, Senden JM, et al. Leucine co-ingestion improves post-prandial muscle protein accretion in elderly men. Clin Nutr. 2013; 32(3): 412-9. doi:10.1016/j.clnu.2012.09.002
112. Pennings B, Boirie Y, Senden JM, Gijsen AP, Kuipers H, van Loon LJ. Whey protein stimulates postprandial muscle protein accretion more effectively than do casein and casein hydrolysate in older men. AJCN. 2011;93(5):997-1005. doi:10.3945/ajcn.110.008102
113. Neeland IJ, Linge J, Birkenfeld AL. Changes in lean body mass with glucagon‐like peptide‐1‐based therapies and mitigation strategies. Diabetes Obes Metab. 2024;26:16-27. doi:10.1111/dom.15728
114. Goodpaster BH, Park SW, Harris TB, Kritchevsky SB, Nevitt M, Schwartz AV, et al. The loss of skeletal muscle strength, mass, and quality in older adults: the health, aging and body composition study. The Journals of Gerontology Series A: J Gerontol A Biol Sci Med Sci. 2006;61(10):1059-64. doi:10.1093/gerona/61.10.1059
115. Li Y, Liu L, Wang B, Wang J, Chen D. Metformin in non-alcoholic fatty liver disease: A systematic review and meta analysis. Biomed Rep. 2013;1(1):57-64. doi:10.3892/br.2012.18
116. Barroso E, Jurado-Aguilar J, Wahli W, Palomer X, Vázquez-Carrera M. Increased hepatic gluconeogenesis and type 2 diabetes mellitus. TEM. 2024. doi:10.1016/j.tem.2024.05.006
117. Hao Y, Tong Y, Guo Y, Lang X, Huang X, Xie X, et al. Metformin attenuates the metabolic disturbance and depression-like behaviors induced by corticosterone and mediates the glucose metabolism pathway. Pharmacopsychia. 2021; 54(03): 131-41. doi:10.1055/a-1351-0566
118. Mayerson AB, Hundal RS, Dufour S, Lebon V, Befroy D, Cline GW, et al. The effects of rosiglitazone on insulin sensitivity, lipolysis, and hepatic and skeletal muscle triglyceride content in patients with type 2 diabetes. Diabete J. 2002; 51(3): 797-802. doi:10.2337/diabetes.51.3.797
119. Prado CM, Batsis JA, Donini LM, Gonzalez MC, Siervo M. Sarcopenic obesity in older adults: a clinical overview. Nat Rev Endocrinol. 2024; 20(5): 261-77. doi:10.1038/s41574-023-00943-z
120. De Spiegeleer A, Beckwee D, Bautmans I, Petrovic M. Sarcopenia Guidelines Development Group of the Belgian Society of Gerontology and Geriatrics (BSGG). Pharmacological interventions to improve muscle mass, muscle strength and physical performance in older people: an umbrella review of systematic reviews and meta-analyses. Drugs Aging. 2018; 35(8):719-34. doi:10.1007/s40266-018-0566-y
121. Beckwée D, Delaere A, Aelbrecht S, Baert V, Beaudart C, Bruyere O, et al. Exercise interventions for the prevention and treatment of sarcopenia. A systematic umbrella review. J Nutr Health Aging. 2019; 23(6):494-502. doi:10.1007/s12603-019-1196-8
122. He N, Ye H. Exercise and muscle atrophy. J Phys Act Health. 2020:255-67. doi:10.1007/978-981-15-1792-1_17
123. Qadir R, Sculthorpe NF, Todd T, Brown EC. Effectiveness of resistance training and associated program characteristics in patients at risk for type 2 diabetes: a systematic review and meta-analysis. Sports Med Open. 2021; 7(1): 38. doi:10.1186/s40798-021-00321-x
124. Solsona R, Pavlin L, Bernardi H, Sanchez AM. Molecular regulation of skeletal muscle growth and organelle biosynthesis: practical recommendations for exercise training. Int J Mol Sci. 2021;22(5):2741. doi:10.3390/ijms22052741
125. Mazo CE, D'Lugos AC, Sweeney KR, Haus JM, Angadi SS, Carroll CC, et al. The effects of acute aerobic and resistance exercise on mTOR signaling and autophagy markers in untrained human skeletal muscle. Eur J Appl Physiol. 2021; 121(10): 2913-24. doi:10.1007/s00421-021-04758-6
126. Ilha J, do Espírito-Santo CC, de Freitas GR. mTOR signaling pathway and protein synthesis: from training to aging and muscle autophagy. Muscle Atrophy. 2018:139-51.doi:10.1007/978-981-13-1435-3_7
127. Kirkpatrick E. The roles of muscle contraction and pharmaceuticals on restoring glucose uptake in a mouse skeletal muscle model of immobilization: University of Nottingham.
128. Amiri N, Fathei M, Mosaferi Ziaaldini M. Effects of resistance training on muscle strength, insulin-like growth factor-1, and insulin-like growth factor-binding protein-3 in healthy elderly subjects: a systematic review and meta-analysis of randomized controlled trials. Hormones. 2021; 20: 247-57. doi:10.1007/s42000-020-00250-6
129. Ratajczak M, Krzywicka M, Szulińska M, Musiałowska D, Kusy K, Karolkiewicz J. Effects of 12-week combined strength and endurance circuit training program on insulin sensitivity and retinol-binding protein 4 in women with insulin-resistance and overweight or mild obesity: a randomized controlled trial. Diabetes Metab Syndr Obes. 2024: 93-106. doi:10.2147/DMSO.S432954
130. Otsuka Y, Yamada Y, Maeda A, Izumo T, Rogi T, Shibata H, et al. Effects of resistance training intensity on muscle quantity/quality in middle‐aged and older people: a randomized controlled trial. J Cachexia Sarcopenia Muscle. 2022; 13(2): 894-908. doi:10.1002/jcsm.12941
131. Léger B, Cartoni R, Praz M, Lamon S, Dériaz O, Crettenand A, et al. Akt signalling through GSK‐3β, mTOR and Foxo1 is involved in human skeletal muscle hypertrophy and atrophy. physiol J. 2006; 576(3):923-33. doi:10.1113/jphysiol.2006.116715
132. Mascher H, Tannerstedt J, Brink-Elfegoun T, Ekblom B, Gustafsson T, Blomstrand E. Repeated resistance exercise training induces different changes in mRNA expression of MAFbx and MuRF-1 in human skeletal muscle. Am J Physiol Endocrinol Metab. 2008;294(1):E43-51. doi:10.1152/ajpendo.00504.2007
133. Pang X, Zhang P, Chen X, Liu W. Ubiquitin-proteasome pathway in skeletal muscle atrophy. Front Physiol. 2023;14:1289537. doi:10.3389/fphys.2023.1289537
134. Mavros Y, Kay S, Simpson KA, Baker MK, Wang Y, Zhao RR, et al. Reductions in C-reactive protein in older adults with type 2 diabetes are related to improvements in body composition following a randomized controlled trial of resistance training. J Cachexia Sarcopenia Muscle. 2014;5:111-20. doi:10.1007/s13539-014-0134-1
135. Wang W, Shen D, Zhang L, Ji Y, Xu L, Chen Z, et al. SKP-SC-EVs mitigate denervated muscle atrophy by inhibiting oxidative stress and inflammation and improving microcirculation. Antioxid. 2021;11(1):66. doi:10.3390/antiox11010066
136. Shen Y, Zhang R, Xu L, Wan Q, Zhu J, Gu J, et al. Microarray analysis of gene expression provides new insights into denervation-induced skeletal muscle atrophy. Front Physiol. 2019;10:1298. doi:10.3389/fphys.2019.01298
137. Huang L, Li M, Deng C, Qiu J, Wang K, Chang M, et al. Potential therapeutic strategies for skeletal muscle atrophy. Antioxid 2022;12(1):44. doi:10.3390/antiox12010044
138. Demarbaix T, Daele UV, Meirte J, Anthonissen M, Maertens K, Moortgat P. Possible benefits of food supplementation or diet in scar management: A scoping review. Scars, Burns Healing. 2024; 10: 20595131241282105. doi:10.1177/20595131241282105
139. Yakubu A, Azlan A, Loh SP, Md Noor S. Can Yellow Stripe Scad Compete with Salmon on Its Role in Platelet Phospholipid Membrane and Its Cardiovascular Benefits? J Obesity. 2019; 2019(1): 4929131. doi:10.1155/2019/4929131
140. Rogero MM, Calder PC. Obesity, inflammation, toll-like receptor 4 and fatty acids. Nutrients. 2018; 10(4): 432. doi:10.3390/nu10040432
141. Ghazali R, Mehta KJ, Bligh SA, Tewfik I, Clemens D, Patel VB. High omega arachidonic acid/docosahexaenoic acid ratio induces mitochondrial dysfunction and altered lipid metabolism in human hepatoma cells. World J. Hepatol. 2020;12(3):84. doi:10.4254/wjh.v12.i3.84
142. Dupont J, Dedeyne L, Dalle S, Koppo K, Gielen E. The role of omega-3 in the prevention and treatment of sarcopenia. ACER. 2019; 31(6): 825-36.doi:10.1007/s40520-019-01146-1
143. Varamini B, Yang JO, Merry BJ, Dau DJ. The Role of Omega-3 Polyunsaturated Fatty Acids in Muscle Growth and Recovery: Implications for Aging and Performance. 2024. doi:10.20944/preprints202407.2418.v1
144. Lai TC, Chen YC, Cheng HH, Lee TL, Tsai JS, Lee IT, et al. Combined exposure to fine particulate matter and high glucose aggravates endothelial damage by increasing inflammation and mitophagy: the involvement of vitamin D. Part Fibre Toxicol. 2022;19(1):25. doi:10.1186/s12989-022-00462-1
145. Kim D-H, Meza CA, Clarke H, Kim J-S, Hickner RC. Vitamin D and endothelial function. Nutr. 2020;12(2): 575. doi:10.3390/nu12020575
146. Chen S, Villalta SA, Agrawal DK. FOXO1 mediates vitamin D deficiency-induced insulin resistance in skeletal muscle. JBMR. 2016; 31(3): 585-95. doi:10.1002/jbmr.2729
147. Nanjan M, Mohammed M, Kumar BP, Chandrasekar M. Thiazolidinediones as antidiabetic agents: A critical review. Bioorg Chem. 2018;77:548-67. doi:10.1016/j.bioorg.2018.02.009
148. Chang JE, Choi MS. A molecular perspective on the potential benefits of metformin for the treatment of inflammatory skin disorders. Int J Mol Sci. 2020; 21(23):8960. doi:10.3390/ijms21238960
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Karimi M, Nobahar M. A review of the role of inflammatory factors and exercise in muscle atrophy: emphasis on obesity and metabolic diseases. Feyz Med Sci J 2025; 29 (1) :93-108
URL: http://feyz.kaums.ac.ir/article-1-5292-en.html


Creative Commons License
This open access journal is licensed under a Creative Commons Attribution-NonCommercial ۴.۰ International License. CC BY-NC ۴. Design and publishing by Kashan University of Medical Sciences.
Copyright ۲۰۲۳© Feyz Medical Sciences Journal. All rights reserved.
Volume 29, Issue 1 (Bimonthly 2025) Back to browse issues page
مجله علوم پزشکی فیض Feyz Medical Sciences Journal
Persian site map - English site map - Created in 0.08 seconds with 46 queries by YEKTAWEB 4710