1. Ong KL, Stafford LK, McLaughlin SA, Boyko EJ, Vollset SE, Smith AE, et al. Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: a systematic analysis for the Global Burden of Disease Study 2021. Lancet. 2023; 402(10397): 203-34. doi:10.1016/S0140-6736(23)01301-6 2. Karimi M, Saghebjoo M, Sarir H, Hedayati M. Exercise Training, Plasma Levels of Branched-Chain Amino Acids, and Insulin Resistance in Metabolic Diseases: A Narrative Review. Iran J Endocrinol Metab. 2023; 25 (2). 3. Cho NH, Shaw JE, Karuranga S, Huang Y, da Rocha Fernandes JD, Ohlrogge A, et al. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract. 2018;138:271-81. doi:10.1016/j.diabres.2018.02.023 4. Leenders M, Verdijk LB, van der Hoeven L, Adam JJ, Van Kranenburg J, Nilwik R, et al. Patients with type 2 diabetes show a greater decline in muscle mass, muscle strength, and functional capacity with aging. JAMDA. 2013;14(8):585-92. doi:10.1016/j.jamda.2013.02.006 5. Guerrero N, Bunout D, Hirsch S, Barrera G, Leiva L, Henríquez S, et al. Premature loss of muscle mass and function in type 2 diabetes. Diabetes Res Clin Pract. 2016;117:32-8. doi:10.1016/j.diabres.2016.04.011 6. Meex RC, Blaak EE, van Loon LJ. Lipotoxicity plays a key role in the development of both insulin resistance and muscle atrophy in patients with type 2 diabetes. Obes Rev. 2019;20(9):1205-17. doi:10.1111/obr.12862 7. Kim TN, Park MS, Yang SJ, Yoo HJ, Kang HJ, Song W, et al. Prevalence and determinant factors of sarcopenia in patients with type 2 diabetes: the Korean Sarcopenic Obesity Study (KSOS). Diabetes Care. 2010;33(7):1497-9. doi:10.2337/dc09-2310 8. Park SW, Goodpaster BH, Strotmeyer ES, Kuller LH, Broudeau R, Kammerer C, et al. Accelerated loss of skeletal muscle strength in older adults with type 2 diabetes: the health, aging, and body composition study. Diabetes Care. 2007;30(6):1507-12. doi:10.2337/dc06-2537 9. Kalyani RR, Saudek CD, Brancati FL, Selvin E. Association of diabetes, comorbidities, and A1C with functional disability in older adults: results from the National Health and Nutrition Examination Survey (NHANES), 1999-2006. Diabetes Care. 2010; 33(5): 1055-60. doi:10.2337/dc09-1597 10. Landi F, Liperoti R, Russo A, Giovannini S, Tosato M, Capoluongo E, et al. Sarcopenia as a risk factor for falls in elderly individuals: results from the ilSIRENTE study. Clin Nutr. 2012;31(5):652-8. doi:10.1016/j.clnu.2012.02.007 11. Ulley J, Abdelhafiz AH. Frailty predicts adverse outcomes in older people with diabetes. Practitioner. 2017;261(1800):17-20. 12. Weng W, Tian Y, Kimball ES, Kong SX, Bouchard J, Hobbs TM, et al. Treatment patterns and clinical characteristics of patients with type 2 diabetes mellitus according to body mass index: findings from an electronic medical records database.BMJ Open Diabetes Res Care. 2017;5(1):e000382. doi:10.1136/bmjdrc-2016-000382 13. Hirose H, Takayama M, Iwao Y, Kawabe H. Effects of aging on visceral and subcutaneous fat areas and on homeostasis model assessment of insulin resistance and insulin secretion capacity in a comprehensive health checkup. J Atheroscler Thromb. 2016;23(2):207-15. doi:10.5551/jat.30700 14. Cartwright MJ, Tchkonia T, Kirkland JL. Aging in adipocytes: potential impact of inherent, depot-specific mechanisms. Exp Gerontol. 2007;42(6):463-71. doi:10.1016/j.exger.2007.03.003 15. Zoico E, Rossi A, Di Francesco V, Sepe A, Olioso D, Pizzini F, et al. Adipose tissue infiltration in skeletal muscle of healthy elderly men: relationships with body composition, insulin resistance, and inflammation at the systemic and tissue level. J Gerontol A Biol Sci Med Sci. 2010;65(3):295-9. doi:10.1093/gerona/glp155 16. Cree MG, Newcomer BR, Katsanos CS, Sheffield-Moore M, Chinkes D, Aarsland A, et al. Intramuscular and liver triglycerides are increased in the elderly. J Clin Endocrinol Metab. 2004; 89(8): 3864-71. doi:10.1210/jc.2003-031986 17. Karimi M, Saghebjoo M, Sarir H, Hedayati M. Skeletal muscle metabolomics analysis after high-intensity interval training in rats fed a high-fat diet. Daneshv Med Basic Clin Res J. 2024; 31(5):76-91. 18. Heber D, Ingles S, Ashley JM, Maxwell MH, Lyons RF, Elashoff RM. Clinical detection of sarcopenic obesity by bioelectrical impedance analysis. Am J Clin Nutr. 1996;64(3):472S-7S. doi:10.1093/ajcn/64.3.472S 19. Li Cw, Yu K, Shyh‐Chang N, Jiang Z, Liu T, Ma S, et al. Pathogenesis of sarcopenia and the relationship with fat mass: descriptive review. J Cachexia Sarcopenia Muscle. 2022;13(2):781-94. doi:10.1002/jcsm.12901 20. Terada T, Boulé NG, Forhan M, Prado CM, Kenny GP, Prud'homme D, et al. Cardiometabolic risk factors in type 2 diabetes with high fat and low muscle mass: at baseline and in response to exercise. Obesity (Silver Spring). 2017;25(5):881-91. doi:10.1002/oby.21808 21. Kim TN, Choi KM. The implications of sarcopenia and sarcopenic obesity on cardiometabolic disease. J Cell Biochem. 2015;116(7):1171-8. doi:10.1002/jcb.25077 22. Son JW, Lee SS, Kim SR, Yoo SJ, Cha BY, Son HY, et al. Low muscle mass and risk of type 2 diabetes in middle-aged and older adults: findings from the KoGES. Diabetologia. 2017;60(5):865-72. doi:10.1007/s00125-016-4196-9 23. Srikanthan P, Hevener AL, Karlamangla AS. Sarcopenia exacerbates obesity-associated insulin resistance and dysglycemia: findings from the National Health and Nutrition Examination Survey III. PloS One. 2010;5(5):e10805. doi:10.1371/journal.pone.0010805 24. Hargreaves M, Spriet LL. Skeletal muscle energy metabolism during exercise. Nat Metab. 2020;2(9):817-28. doi:10.1038/s42255-020-0251-4 25. Karakelides H, Nair KS. Sarcopenia of aging and its metabolic impact. Cur Top Dev Biol. 2005;68:123-48. doi:10.1016/S0070-2153(05)68005-2 26. Huang LY, Liu CH, Chen FY, Kuo CH, Pitrone P, Liu JS. Aging affects insulin resistance, insulin secretion, and glucose effectiveness in subjects with normal blood glucose and body weight. Diagnostics (Basel). 2023;13(13):2158. doi:10.3390/diagnostics13132158 27. Boston RC, Stefanovski D, Moate PJ, Sumner AE, Watanabe RM, Bergman RN. MINMOD Millennium: a computer program to calculate glucose effectiveness and insulin sensitivity from the frequently sampled intravenous glucose tolerance test. Diabetes Technol Ther. 2003;5(6):1003-15. doi:10.1089/152091503322641060 28. Best JD, Kahn SE, Ader M, Watanabe RM, Ni TC, Bergman RN. Role of glucose effectiveness in the determination of glucose tolerance. Diabetes Care. 1996;19(9):1018-30. doi:10.2337/diacare.19.9.1018 29. Thoma A, Lightfoot AP. NF-kB and inflammatory cytokine signalling: role in skeletal muscle atrophy. Adv Exp Med Biol. 2018; 267-279. doi:10.1007/978-981-13-1435-3_12 30. Zahedi AS, Daneshpour MS, Akbarzadeh M, Hedayati M, Azizi F, Zarkesh M. Association of baseline and changes in adiponectin, homocysteine, high-sensitivity C-reactive protein, interleukin-6, and interleukin-10 levels and metabolic syndrome incidence: Tehran lipid and glucose study. Heliyon. 2023;9(9). doi:10.1016/j.heliyon.2023.e19911 31. Koo HS, Kim MJ, Kim KM, Kim YS. Decreased muscle mass is not an independent risk factor for metabolic syndrome in Korean population aged 70 or older. Clin Endocrinol. 2015;82(4):509-16. doi:10.1111/cen.12509 32. Wang ST, Lin YK, Weng SF, Huang CL, Huang HC, Chiu YC, et al. Skeletal muscle ratio: a complete mediator of physical activity and HbA1C in type 2 diabetes. Biol Res Nurs. 2020; 22(4): 536-43. doi:10.1177/1099800420942884 33. Yang Q, Zhang Y, Zeng Q, Yang C, Shi J, Zhang C, et al. Correlation between diabetic peripheral neuropathy and sarcopenia in patients with type 2 diabetes mellitus and diabetic foot disease: a cross-sectional study. Diabetes, Metab Syndr Obes. 2020; 377-386. doi:10.2147/DMSO.S237362 34. Workeneh B, Bajaj M. The regulation of muscle protein turnover in diabetes. Int J Biochem Cell Biol. 2013;45(10):2239-44. doi:10.1016/j.biocel.2013.06.028 35. Lee CG, Boyko EJ, Strotmeyer ES, Lewis CE, Cawthon PM, Hoffman AR, et al. Association between insulin resistance and lean mass loss and fat mass gain in older men without diabetes mellitus. J Am Geriatr Soc . 2011;59(7):1217-24. doi:10.1111/j.1532-5415.2011.03472.x 36. Pupim LB, Heimburger O, Qureshi AR, Ikizler TA, Stenvinkel P. Accelerated lean body mass loss in incident chronic dialysis patients with diabetes mellitus. Kidney int. 2005;68(5):2368-74. doi:10.1111/j.1523-1755.2005.00699.x 37. Ferrari U, Then C, Rottenkolber M, Selte C, Seissler J, Conzade R, et al. Longitudinal association of type 2 diabetes and insulin therapy with muscle parameters in the KORA-Age study. Acta Diabetol. 2020; 57:1057-63. doi:10.1007/s00592-020-01523-7 38. Kalyani RR, Metter EJ, Egan J, Golden SH, Ferrucci L. Hyperglycemia predicts persistently lower muscle strength with aging. Diabetes Care. 2015;38(1):82-90. doi:10.2337/dc14-1166 39. Andreassen CS, Jakobsen J, Ringgaard S, Ejskjaer N, Andersen H. Accelerated atrophy of lower leg and foot muscles-a follow-up study of long-term diabetic polyneuropathy using magnetic resonance imaging (MRI). Diabetologia. 2009;52:1182-91. doi:10.1007/s00125-009-1320-0 40. Gatineau E, Savary-Auzeloux I, Migné C, Polakof S, Dardevet D, Mosoni L. Chronic intake of sucrose accelerates sarcopenia in older male rats through alterations in insulin sensitivity and muscle protein synthesis. J Nutr. 2015;145(5):923-30. doi:10.3945/jn.114.205583 41. Giannarelli R, Aragona M, Coppelli A, Del Prato S. Reducing insulin resistance with metformin: the evidence today. Diabetes Metab. 2003; 29(4):6S28-35. doi:10.1016/S1262-3636(03)72785-2 42. Jahn LA, Hartline L, Liu Z, Barrett EJ. Metformin improves skeletal muscle microvascular insulin resistance in metabolic syndrome. Am J Physiol Endocrinol Metab. 2022;322(2):E173-E80. doi:10.1152/ajpendo.00287.2021 43. Stephens FB, Chee C, Wall BT, Murton AJ, Shannon CE, Van Loon LJ, et al. Lipid-induced insulin resistance is associated with an impaired skeletal muscle protein synthetic response to amino acid ingestion in healthy young men. Diabete. 2015; 64(5):1615-20. doi:10.2337/db14-0961 44. Christian CJ, Benian GM. Animal models of sarcopenia. Aging Cell. 2020;19(10):e13223. doi:10.1111/acel.13223 45. Sartori R, Romanello V, Sandri M. Mechanisms of muscle atrophy and hypertrophy: implications in health and disease. Nat Commun. 2021;12(1):330. doi:10.1038/s41467-020-20123-1 46. Vainshtein A, Sandri M. Signaling pathways that control muscle mass. Int J Mol Sci. 2020; 21(13): 4759. doi:10.3390/ijms21134759 47. Voulgaridou G, Papadopoulou SD, Spanoudaki M, Kondyli FS, Alexandropoulou I, Michailidou S, et al. Increasing muscle mass in elders through diet and exercise: a literature review of recent RCTs. Foods. 2023; 12(6):1218. doi:10.3390/foods12061218 48. Mitchell WK, Wilkinson DJ, Phillips BE, Lund JN, Smith K, Atherton PJ. Human skeletal muscle protein metabolism responses to amino acid nutrition. Adv Nut. 2016; 7(4): 828S-38S. doi:10.3945/an.115.011650 49. Ato S, Matsunami H, Ogasawara R. Aging is associated with impaired postprandial response of skeletal muscle protein synthesis to high-intensity muscle contraction in mice. J Gerontol: Series A. 2023; 78(4): 587-95. doi:10.1093/gerona/glad014 50. Ponti F, Santoro A, Mercatelli D, Gasperini C, Conte M, Martucci M, et al. Aging and imaging assessment of body composition: from fat to facts. Front Endocrinol. 2020;10:861. doi:10.3389/fendo.2019.00861 51. Rabadán-Chávez G, de la Garza RID, Jacobo-Velázquez DA. White adipose tissue: Distribution, molecular insights of impaired expandability, and its implication in fatty liver disease. Biochim Biophys Acta Mol Basis Dis. 2023; 1869(8):166853. doi:10.1016/j.bbadis.2023.166853 52. Romero A, Eckel J. Organ crosstalk and the modulation of insulin signaling. Cell J. 2021; 10(8): 2082. doi:10.3390/cells10082082 53. 53. Sabaratnam R, Wojtaszewski JF, Højlund K. Factors mediating exercise‐induced organ crosstalk. Acta Physiol. 2022; 234(2): e13766. doi:10.1111/apha.13766 54. Ren Y, Zhao H, Yin C, Lan X, Wu L, Du X, et al. Adipokines, hepatokines and myokines: focus on their role and molecular mechanisms in adipose tissue inflammation. Front Endocrinol. 2022; 13: 873699. doi:10.3389/fendo.2022.873699 55. Chen S, Saeed AF, Liu Q, Jiang Q, Xu H, Xiao GG, et al. Macrophages in immunoregulation and therapeutics. Curr Signal Transduct Ther. 2023; 8(1): 207. doi:10.1038/s41392-023-01452-1 56. Shaikh PZ. Cytokines & their physiologic and pharmacologic functions in inflammation: A review. IJPLS. 2011;2(11). 57. Ribeiro JC, Duarte JG, Gomes GA, Costa-Guarisco LP, de Jesus IT, Nascimento CM, et al. Associations between inflammatory markers and muscle strength in older adults according to the presence or absence of obesity. Exp Gerontol. 2021; 151: 111409. doi:10.1016/j.exger.2021.111409 58. Alizadeh Pahlavani H. Exercise therapy for people with sarcopenic obesity: myokines and adipokines as effective actors. Front Endocrinol. 2022; 13:811751. doi:10.3389/fendo.2022.811751 59. Giardullo L, Corrado A, Maruotti N, Cici D, Mansueto N, Cantatore FP. Adipokine role in physiopathology of inflammatory and degenerative musculoskeletal diseases. Int J Pharmacol. 2021; 35: 20587384211015034. doi:10.1177/20587384211015034 60. Peris-Moreno D, Cussonneau L, Combaret L, Polge C, Taillandier D. Ubiquitin ligases at the heart of skeletal muscle atrophy control. Molecules. 2021; 26(2): 407. doi:10.3390/molecules26020407 61. Bodine SC, Baehr LM. Skeletal muscle atrophy and the E3 ubiquitin ligases MuRF1 and MAFbx/atrogin-1. Am J Physiol Cell Physiol. 2014; 307(6): E469-E84. doi:10.1152/ajpendo.00204.2014 62. Pellegrinelli V, Rouault C, Rodriguez-Cuenca S, Albert V, Edom-Vovard F, Vidal-Puig A, et al. Human adipocytes induce inflammation and atrophy in muscle cells during obesity. Diabete J. 2015; 64(9): 3121-34. doi:10.2337/db14-0796 63. Yang HM, Kim J, Shin D, Kim JY, You J, Lee H-C, et al. Resistin impairs mitochondrial homeostasis via cyclase-associated protein 1-mediated fission, leading to obesity-induced metabolic diseases. Metab. 2023; 138: 155343. doi:10.1016/j.metabol.2022.155343 64. Saatmann N, Schön M, Zaharia OP, Huttasch M, Strassburger K, Trenkamp S, et al. Association of thyroid function with non‐alcoholic fatty liver disease in recent‐onset diabetes. Liver Int. 2024; 44(1): 27-38. doi:10.1111/liv.15723 65. Geng Y, Faber KN, de Meijer VE, Blokzijl H, Moshage H. How does hepatic lipid accumulation lead to lipotoxicity in non-alcoholic fatty liver disease? Hepatol Inte. 2021; 15: 21-35. doi:10.1007/s12072-020-10121-2 66. Pal SC, Méndez-Sánchez N. Insulin resistance and adipose tissue interactions as the cornerstone of metabolic (dysfunction)-associated fatty liver disease pathogenesis. WJG. 2023; 29(25): 3999. doi:10.3748/wjg.v29.i25.3999 67. Van Sloten TT, Savelberg HH, Duimel-Peeters IG, Meijer K, Henry RM, Stehouwer CD, et al. Peripheral neuropathy, decreased muscle strength and obesity are strongly associated with walking in persons with type 2 diabetes without manifest mobility limitations. Diabetes Res Clin Pract. 2011; 91(1): 32-9. doi:10.1016/j.diabres.2010.09.030 68. Hua F. New insights into diabetes mellitus and its complications: a narrative review. Ann Transl Med. 2020;8(24). doi:10.21037/atm-20-7243 69. Pasmans K, Adriaens ME, Olinga P, Langen R, Rensen SS, Schaap FG, et al. Hepatic steatosis contributes to the development of muscle atrophy via inter-organ crosstalk. Front Endocrinol. 2021; 12: 733625. doi:10.3389/fendo.2021.733625 70. Schaap LA, Pluijm SM, Deeg DJ, Visser M. Inflammatory markers and loss of muscle mass (sarcopenia) and strength. Am J Med. 2006; 119(6): 526. e9-. e17. doi:10.1016/j.amjmed.2005.10.049 71. Held NM, Wefers J, van Weeghel M, Daemen S, Hansen J, Vaz FM, et al. Skeletal muscle in healthy humans exhibits a day-night rhythm in lipid metabolism. Mol Metab. 2020;37:100989. doi:10.1016/j.molmet.2020.100989 72. Lara-Castro C, Garvey WT. Intracellular lipid accumulation in liver and muscle and the insulin resistance syndrome. Endocrinol Metab Clin North Am. 2008; 37(4): 841-56. doi:10.1016/j.ecl.2008.09.002 73. Turpin S, Ryall JG, Southgate R, Darby I, Hevener A, Febbraio MA, et al. Examination of 'lipotoxicity'in skeletal muscle of high‐fat fed and ob/ob mice. Physiol J. 2009; 587(7): 1593-605. doi:10.1113/jphysiol.2008.166033 74. Amati F. Revisiting the diacylglycerol‐induced insulin resistance hypothesis. Obesity Rev. 2012; 13: 40-50. doi:10.1111/j.1467-789X.2012.01036.x 75. Perreault L, Newsom SA, Strauss A, Kerege A, Kahn DE, Harrison KA, et al. Intracellular localization of diacylglycerols and sphingolipids influences insulin sensitivity and mitochondrial function in human skeletal muscle. JCI Insight. 2018; 3(3). doi:10.1172/jci.insight.96805 76. Lee H, Ha TY, Jung CH, Nirmala FS, Park SY, Huh YH, et al. Mitochondrial dysfunction in skeletal muscle contributes to the development of acute insulin resistance in mice. J Cachexia Sarcopenia Muscle. 2021;12(6):1925-39. doi:10.1002/jcsm.12794 77. Zheng L, Rao Z, Guo Y, Chen P, Xiao W. High-intensity interval training restores glycolipid metabolism and mitochondrial function in skeletal muscle of mice with type 2 diabetes. Front Endocrinol. 2020;11:561. doi:10.3389/fendo.2020.00561 78. Kelley DE, He J, Menshikova EV, Ritov VB. Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabete J. 2002; 51(10): 2944-50. doi:10.2337/diabetes.51.10.2944 79. Qiu Y, Gan M, Wang X, Liao T, Chen Q, Lei Y, et al. The global perspective on peroxisome proliferator-activated receptor γ (PPARγ) in ectopic fat deposition: A review. Int J Biol Macromol. 2023; 127042. doi:10.1016/j.ijbiomac.2023.127042 80. Leduc-Gaudet JP, Picard M, Pelletier FS-J, Sgarioto N, Auger M-J, Vallée J, et al. Mitochondrial morphology is altered in atrophied skeletal muscle of aged mice. Oncotarget. 2015;6(20):17923. doi:10.18632/oncotarget.4235 81. Alway SE, Paez HG, Pitzer CR. The role of mitochondria in mediation of skeletal muscle repair. Muscles. 2023; 2(2):119-63. doi:10.3390/muscles2020011 82. Perry BD, Caldow MK, Brennan-Speranza TC, Sbaraglia M, Jerums G, Garnham A, et al. Muscle atrophy in patients with Type 2 Diabetes Mellitus: roles of inflammatory pathways, physical activity and exercise. ExercImmunol Rev. 2016; 22:94. 83. Shen L, Meng X, Zhang Z, Wang T. Physical exercise for muscle atrophy. Muscle atrophy. 2018:529-45. doi:10.1007/978-981-13-1435-3_24 84. Hodgson H, Wilkinson M, Bowen S, Giannoudis P, Howard A. Older adults are not more susceptible to acute muscle atrophy after immobilisation compared to younger adults: a systematic review. Eur J Trauma Emerg Surg. 2022;48(2):1167-76. doi:10.1007/s00068-021-01694-0 85. Dirks ML, Wall BT, Nilwik R, Weerts DH, Verdijk LB, Van Loon LJ. Skeletal muscle disuse atrophy is not attenuated by dietary protein supplementation in healthy older men. J Nutr. 2014; 144(8):1196-203. doi:10.3945/jn.114.194217 86. Goodpaster BH, He J, Watkins S, Kelley DE. Skeletal muscle lipid content and insulin resistance: evidence for a paradox in endurance-trained athletes. J Clin Endocrinol Metab. 2001; 86(12):5755-61. doi:10.1210/jcem.86.12.8075 87. Tarnopolsky MA, Rennie CD, Robertshaw HA, Fedak-Tarnopolsky SN, Devries MC, Hamadeh MJ. Influence of endurance exercise training and sex on intramyocellular lipid and mitochondrial ultrastructure, substrate use, and mitochondrial enzyme activity. Am J Physiol Regul Integr Comp Physio. 2007;292(3):R1271-R8. doi:10.1152/ajpregu.00472.2006 88. Van Loon LJ, Koopman R, Manders R, van der Weegen W, van Kranenburg GP, Keizer HA. Intramyocellular lipid content in type 2 diabetes patients compared with overweight sedentary men and highly trained endurance athletes. Am J Physiol Endocrinol Metab. 2004;287 (3):E558-E65. doi:10.1152/ajpendo.00464.2003 89. Zacharewicz E, Hesselink M, Schrauwen P. Exercise counteracts lipotoxicity by improving lipid turnover and lipid droplet quality. J Intern Med. 2018;284(5):505-18. doi:10.1111/joim.12729 90. Meex RC, Schrauwen-Hinderling VB, Moonen-Kornips E, Schaart G, Mensink M, Phielix E, et al. Restoration of muscle mitochondrial function and metabolic flexibility in type 2 diabetes by exercise training is paralleled by increased myocellular fat storage and improved insulin sensitivity. Diabete J. 2010; 59(3):572-9. doi:10.2337/db09-1322 91. Hickner R, Racette S, Binder E, Fisher J, Kohrt W. Effects of 10 days of endurance exercise training on the suppression of whole body and regional lipolysis by insulin. J Clin Endocrinol Metab. 2000;85(4):1498-504.doi:10.1210/jc.85.4.1498 92. Brouwers B, Schrauwen-Hinderling VB, Jelenik T, Gemmink A, Sparks LM, Havekes B, et al. Exercise training reduces intrahepatic lipid content in people with and people without nonalcoholic fatty liver. Am J Physiol Endocrinol Metab. 2018; 314(2):E165-E73. doi:10.1152/ajpendo.00266.2017 93. Wc K. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002; 346:393-403. doi:10.1056/NEJMoa012512 94. Ruegsegger GN, Pataky MW, Simha S, Robinson MM, Klaus KA, Nair KS. High-intensity aerobic, but not resistance or combined, exercise training improves both cardiometabolic health and skeletal muscle mitochondrial dynamics. J Appl Physiol. 2023;135(4):763-74. doi:10.1152/japplphysiol.00405.2023 95. Sun R, Wan J, Tang J, Deng Y, Zhang M, Liu C, et al. Effectiveness of Resistance Training on body composition, muscle strength, and biomarker in Sarcopenic Older Adults: A Meta-Analysis of randomized controlled trials. Arch Gerontol Geriatr. 2024; 105595. doi:10.1016/j.archger.2024.105595 96. Van Tienen F, Praet SF, De Feyter H, Van Den Broek N, Lindsey P, Schoonderwoerd K, et al. Physical activity is the key determinant of skeletal muscle mitochondrial function in type 2 diabetes. J Clin Endocrinol Metab. 2012;97(9):3261-9. doi:10.1210/jc.2011-3454 97. Sigal RJ, Kenny GP, Boulé NG, Wells GA, Prud'homme D, Fortier M, et al. Effects of aerobic training, resistance training, or both on glycemic control in type 2 diabetes: a randomized trial. Ann Intern Med. 2007;147(6):357-69. doi:10.7326/0003-4819-147-6-200709180-00005 98. Penn L, White M, Lindström J, den Boer AT, Blaak E, Eriksson JG, et al. Importance of weight loss maintenance and risk prediction in the prevention of type 2 diabetes: analysis of European Diabetes Prevention Study RCT. PloS One. 2013;8(2):e57143. doi:10.1371/journal.pone.0057143 99. Zhao X, An X, Yang C, Sun W, Ji H, Lian F. The crucial role and mechanism of insulin resistance in metabolic disease. Front Endocrinol. 2023; 14: 1149239. doi:10.3389/fendo.2023.1149239 100. Nilwik R, Snijders T, Leenders M, Groen BB, van Kranenburg J, Verdijk LB, et al. The decline in skeletal muscle mass with aging is mainly attributed to a reduction in type II muscle fiber size. Exp gerontol. Exp Gerontol. 2013; 48(5): 492-8. doi:10.1016/j.exger.2013.02.012 101. Toledo FG, Menshikova EV, Azuma K, Radiková Z, Kelley CA, Ritov VB, et al. Mitochondrial capacity in skeletal muscle is not stimulated by weight loss despite increases in insulin action and decreases in intramyocellular lipid content. Diabete J. 2008;57(4):987-94. doi:10.2337/db07-1429 102. Devries MC, Breen L, Von Allmen M, MacDonald MJ, Moore DR, Offord EA, et al. Low‐load resistance training during step‐reduction attenuates declines in muscle mass and strength and enhances anabolic sensitivity in older men. Physiol Rep. 2015; 3(8):e12493. doi:10.14814/phy2.12493 103. Bamman MM, Clarke MS, Feeback DL, Talmadge RJ, Stevens BR, Lieberman SA, et al. Impact of resistance exercise during bed rest on skeletal muscle sarcopenia and myosin isoform distribution. J Appl physiol. 1998;84(1):157-63. doi:10.1152/jappl.1998.84.1.157 104. Hassan BH, Hewitt J, Keogh JW, Bermeo S, Duque G, Henwood TR. Impact of resistance training on sarcopenia in nursing care facilities: A pilot study. J Geriatr nurs. 2016;37(2):116-21. doi:10.1016/j.gerinurse.2015.11.001 105. Stewart V, Saunders D, Greig C. Responsiveness of muscle size and strength to physical training in very elderly people: a systematic review. Scand J Med Sci Sports. 2014; 24(1): e1-e10. doi:10.1111/sms.12123 106. Baker BS, Weitzel KJ, Royse LA, Miller K, Guess TM, Ball SD, et al. Efficacy of an 8-week resistance training program in older adults: a randomized controlled trial. JAPA. 2020;29(1):121-9. doi:10.1123/japa.2020-0078 107. Burd NA, West DW, Staples AW, Atherton PJ, Baker JM, Moore DR, et al. Low-load high volume resistance exercise stimulates muscle protein synthesis more than high-load low volume resistance exercise in young men. PloS One. 2010; 5(8): e12033. doi:10.1371/journal.pone.0012033 108. Breen L, Stokes KA, Churchward-Venne TA, Moore DR, Baker SK, Smith K, et al. Two weeks of reduced activity decreases leg lean mass and induces "anabolic resistance" of myofibrillar protein synthesis in healthy elderly. J Clin Endocrinol Metab. 2013; 98(6): 2604-12. doi:10.1210/jc.2013-1502 109. Murphy J, Chevalier S, Gougeon R, Goulet ÉD, Morais JA. Effect of obesity and type 2 diabetes on protein anabolic response to insulin in elderly women. Exp Gerontol. 2015;69:20-6. doi:10.1016/j.exger.2015.06.008 110. Pennings B, Groen B, de Lange A, Gijsen AP, Zorenc AH, Senden JM, et al. Amino acid absorption and subsequent muscle protein accretion following graded intakes of whey protein in elderly men. Am J Physiol Endocrinol Metab. 2012;302(8):E992-E9. doi:10.1152/ajpendo.00517.2011 111. Wall BT, Hamer HM, de Lange A, Kiskini A, Groen BB, Senden JM, et al. Leucine co-ingestion improves post-prandial muscle protein accretion in elderly men. Clin Nutr. 2013; 32(3): 412-9. doi:10.1016/j.clnu.2012.09.002 112. Pennings B, Boirie Y, Senden JM, Gijsen AP, Kuipers H, van Loon LJ. Whey protein stimulates postprandial muscle protein accretion more effectively than do casein and casein hydrolysate in older men. AJCN. 2011;93(5):997-1005. doi:10.3945/ajcn.110.008102 113. Neeland IJ, Linge J, Birkenfeld AL. Changes in lean body mass with glucagon‐like peptide‐1‐based therapies and mitigation strategies. Diabetes Obes Metab. 2024;26:16-27. doi:10.1111/dom.15728 114. Goodpaster BH, Park SW, Harris TB, Kritchevsky SB, Nevitt M, Schwartz AV, et al. The loss of skeletal muscle strength, mass, and quality in older adults: the health, aging and body composition study. The Journals of Gerontology Series A: J Gerontol A Biol Sci Med Sci. 2006;61(10):1059-64. doi:10.1093/gerona/61.10.1059 115. Li Y, Liu L, Wang B, Wang J, Chen D. Metformin in non-alcoholic fatty liver disease: A systematic review and meta analysis. Biomed Rep. 2013;1(1):57-64. doi:10.3892/br.2012.18 116. Barroso E, Jurado-Aguilar J, Wahli W, Palomer X, Vázquez-Carrera M. Increased hepatic gluconeogenesis and type 2 diabetes mellitus. TEM. 2024. doi:10.1016/j.tem.2024.05.006 117. Hao Y, Tong Y, Guo Y, Lang X, Huang X, Xie X, et al. Metformin attenuates the metabolic disturbance and depression-like behaviors induced by corticosterone and mediates the glucose metabolism pathway. Pharmacopsychia. 2021; 54(03): 131-41. doi:10.1055/a-1351-0566 118. Mayerson AB, Hundal RS, Dufour S, Lebon V, Befroy D, Cline GW, et al. The effects of rosiglitazone on insulin sensitivity, lipolysis, and hepatic and skeletal muscle triglyceride content in patients with type 2 diabetes. Diabete J. 2002; 51(3): 797-802. doi:10.2337/diabetes.51.3.797 119. Prado CM, Batsis JA, Donini LM, Gonzalez MC, Siervo M. Sarcopenic obesity in older adults: a clinical overview. Nat Rev Endocrinol. 2024; 20(5): 261-77. doi:10.1038/s41574-023-00943-z 120. De Spiegeleer A, Beckwee D, Bautmans I, Petrovic M. Sarcopenia Guidelines Development Group of the Belgian Society of Gerontology and Geriatrics (BSGG). Pharmacological interventions to improve muscle mass, muscle strength and physical performance in older people: an umbrella review of systematic reviews and meta-analyses. Drugs Aging. 2018; 35(8):719-34. doi:10.1007/s40266-018-0566-y 121. Beckwée D, Delaere A, Aelbrecht S, Baert V, Beaudart C, Bruyere O, et al. Exercise interventions for the prevention and treatment of sarcopenia. A systematic umbrella review. J Nutr Health Aging. 2019; 23(6):494-502. doi:10.1007/s12603-019-1196-8 122. He N, Ye H. Exercise and muscle atrophy. J Phys Act Health. 2020:255-67. doi:10.1007/978-981-15-1792-1_17 123. Qadir R, Sculthorpe NF, Todd T, Brown EC. Effectiveness of resistance training and associated program characteristics in patients at risk for type 2 diabetes: a systematic review and meta-analysis. Sports Med Open. 2021; 7(1): 38. doi:10.1186/s40798-021-00321-x 124. Solsona R, Pavlin L, Bernardi H, Sanchez AM. Molecular regulation of skeletal muscle growth and organelle biosynthesis: practical recommendations for exercise training. Int J Mol Sci. 2021;22(5):2741. doi:10.3390/ijms22052741 125. Mazo CE, D'Lugos AC, Sweeney KR, Haus JM, Angadi SS, Carroll CC, et al. The effects of acute aerobic and resistance exercise on mTOR signaling and autophagy markers in untrained human skeletal muscle. Eur J Appl Physiol. 2021; 121(10): 2913-24. doi:10.1007/s00421-021-04758-6 126. Ilha J, do Espírito-Santo CC, de Freitas GR. mTOR signaling pathway and protein synthesis: from training to aging and muscle autophagy. Muscle Atrophy. 2018:139-51.doi:10.1007/978-981-13-1435-3_7 127. Kirkpatrick E. The roles of muscle contraction and pharmaceuticals on restoring glucose uptake in a mouse skeletal muscle model of immobilization: University of Nottingham. 128. Amiri N, Fathei M, Mosaferi Ziaaldini M. Effects of resistance training on muscle strength, insulin-like growth factor-1, and insulin-like growth factor-binding protein-3 in healthy elderly subjects: a systematic review and meta-analysis of randomized controlled trials. Hormones. 2021; 20: 247-57. doi:10.1007/s42000-020-00250-6 129. Ratajczak M, Krzywicka M, Szulińska M, Musiałowska D, Kusy K, Karolkiewicz J. Effects of 12-week combined strength and endurance circuit training program on insulin sensitivity and retinol-binding protein 4 in women with insulin-resistance and overweight or mild obesity: a randomized controlled trial. Diabetes Metab Syndr Obes. 2024: 93-106. doi:10.2147/DMSO.S432954 130. Otsuka Y, Yamada Y, Maeda A, Izumo T, Rogi T, Shibata H, et al. Effects of resistance training intensity on muscle quantity/quality in middle‐aged and older people: a randomized controlled trial. J Cachexia Sarcopenia Muscle. 2022; 13(2): 894-908. doi:10.1002/jcsm.12941 131. Léger B, Cartoni R, Praz M, Lamon S, Dériaz O, Crettenand A, et al. Akt signalling through GSK‐3β, mTOR and Foxo1 is involved in human skeletal muscle hypertrophy and atrophy. physiol J. 2006; 576(3):923-33. doi:10.1113/jphysiol.2006.116715 132. Mascher H, Tannerstedt J, Brink-Elfegoun T, Ekblom B, Gustafsson T, Blomstrand E. Repeated resistance exercise training induces different changes in mRNA expression of MAFbx and MuRF-1 in human skeletal muscle. Am J Physiol Endocrinol Metab. 2008;294(1):E43-51. doi:10.1152/ajpendo.00504.2007 133. Pang X, Zhang P, Chen X, Liu W. Ubiquitin-proteasome pathway in skeletal muscle atrophy. Front Physiol. 2023;14:1289537. doi:10.3389/fphys.2023.1289537 134. Mavros Y, Kay S, Simpson KA, Baker MK, Wang Y, Zhao RR, et al. Reductions in C-reactive protein in older adults with type 2 diabetes are related to improvements in body composition following a randomized controlled trial of resistance training. J Cachexia Sarcopenia Muscle. 2014;5:111-20. doi:10.1007/s13539-014-0134-1 135. Wang W, Shen D, Zhang L, Ji Y, Xu L, Chen Z, et al. SKP-SC-EVs mitigate denervated muscle atrophy by inhibiting oxidative stress and inflammation and improving microcirculation. Antioxid. 2021;11(1):66. doi:10.3390/antiox11010066 136. Shen Y, Zhang R, Xu L, Wan Q, Zhu J, Gu J, et al. Microarray analysis of gene expression provides new insights into denervation-induced skeletal muscle atrophy. Front Physiol. 2019;10:1298. doi:10.3389/fphys.2019.01298 137. Huang L, Li M, Deng C, Qiu J, Wang K, Chang M, et al. Potential therapeutic strategies for skeletal muscle atrophy. Antioxid 2022;12(1):44. doi:10.3390/antiox12010044 138. Demarbaix T, Daele UV, Meirte J, Anthonissen M, Maertens K, Moortgat P. Possible benefits of food supplementation or diet in scar management: A scoping review. Scars, Burns Healing. 2024; 10: 20595131241282105. doi:10.1177/20595131241282105 139. Yakubu A, Azlan A, Loh SP, Md Noor S. Can Yellow Stripe Scad Compete with Salmon on Its Role in Platelet Phospholipid Membrane and Its Cardiovascular Benefits? J Obesity. 2019; 2019(1): 4929131. doi:10.1155/2019/4929131 140. Rogero MM, Calder PC. Obesity, inflammation, toll-like receptor 4 and fatty acids. Nutrients. 2018; 10(4): 432. doi:10.3390/nu10040432 141. Ghazali R, Mehta KJ, Bligh SA, Tewfik I, Clemens D, Patel VB. High omega arachidonic acid/docosahexaenoic acid ratio induces mitochondrial dysfunction and altered lipid metabolism in human hepatoma cells. World J. Hepatol. 2020;12(3):84. doi:10.4254/wjh.v12.i3.84 142. Dupont J, Dedeyne L, Dalle S, Koppo K, Gielen E. The role of omega-3 in the prevention and treatment of sarcopenia. ACER. 2019; 31(6): 825-36.doi:10.1007/s40520-019-01146-1 143. Varamini B, Yang JO, Merry BJ, Dau DJ. The Role of Omega-3 Polyunsaturated Fatty Acids in Muscle Growth and Recovery: Implications for Aging and Performance. 2024. doi:10.20944/preprints202407.2418.v1 144. Lai TC, Chen YC, Cheng HH, Lee TL, Tsai JS, Lee IT, et al. Combined exposure to fine particulate matter and high glucose aggravates endothelial damage by increasing inflammation and mitophagy: the involvement of vitamin D. Part Fibre Toxicol. 2022;19(1):25. doi:10.1186/s12989-022-00462-1 145. Kim D-H, Meza CA, Clarke H, Kim J-S, Hickner RC. Vitamin D and endothelial function. Nutr. 2020;12(2): 575. doi:10.3390/nu12020575 146. Chen S, Villalta SA, Agrawal DK. FOXO1 mediates vitamin D deficiency-induced insulin resistance in skeletal muscle. JBMR. 2016; 31(3): 585-95. doi:10.1002/jbmr.2729 147. Nanjan M, Mohammed M, Kumar BP, Chandrasekar M. Thiazolidinediones as antidiabetic agents: A critical review. Bioorg Chem. 2018;77:548-67. doi:10.1016/j.bioorg.2018.02.009 148. Chang JE, Choi MS. A molecular perspective on the potential benefits of metformin for the treatment of inflammatory skin disorders. Int J Mol Sci. 2020; 21(23):8960. doi:10.3390/ijms21238960
|