[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Indexing Sources::
Guide for Authors::
Online Submission::
Ethics::
Articles archive::
For Reviewers::
Contact us::
AI::
::
Basic and Clinical Biochemistry and Nutrition
..
DOAJ
..
CINAHL
..
EBSCO
..
IMEMR
..
ISC
..
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
enamad
..
:: Volume 29, Issue 1 (Bimonthly 2025) ::
Feyz Med Sci J 2025, 29(1): 1-11 Back to browse issues page
Evaluation of the effects of polymyxin B and bacteriocin extracted from Lactobacillus plantarum on surface hydrophobicity, alginate production, motility, and biofilm formation in Pseudomonas aeruginosa
Mohammad Tajik , Fatemeh Noorbakhsh * , Masoumeh Mahdavi Ortakand
Department of Microbiology, Biological Sciences College, Varamin-Pishva Branch, Islamic Azad University, Varamin-Pishva, Iran & Department of Microbiology, Biological Sciences College, Varamin-Pishva Branch, Islamic Azad University, Varamin-Pishva, Iran , niloofar_noorbakhsh@yahoo.com
Abstract:   (414 Views)
Background and Aim: The indiscriminate use of antibiotics has led to the emergence of antibiotic-resistant bacterial strains, highlighting the need for alternative therapeutic strategies such as probiotics. This study aimed to investigate the inhibitory effects of bacteriocin derived from Lactobacillus plantarum and the antibiotic polymyxin B on biofilm formation and certain virulence factors of Pseudomonas aeruginosa.
Methods: In this experimental study, 30 clinical isolates of P. aeruginosa were obtained from various clinical samples. The isolates were identified using standard biochemical and microbiological assays. Bacteriocin was extracted from the L. plantarum strain MT.ZH293. The effects of bacteriocin and polymyxin B on biofilm formation, surface hydrophobicity, alginate production, and bacterial motility were assessed. The minimum inhibitory concentration (MIC) was determined using the microdilution method.
Results: For polymyxin B, the MIC was 4 µg/mL in 13.33% of isolates and 8 µg/mL in 86.6% of isolates. Regarding bacteriocin, 20% of isolates showed an MIC of 125 µg/mL, while 80% exhibited an MIC of 250 µg/mL. Following treatment with polymyxin B, 46.6% of isolates formed strong biofilms, 46.6% moderate, and 6.6% weak biofilms. In contrast, treatment with bacteriocin resulted in 13.3% of isolates forming moderate biofilms and 86.6% forming weak biofilms. Bacteriocin was more effective than polymyxin B in inhibiting biofilm formation, reducing surface hydrophobicity, and suppressing alginate production. Additionally, bacteriocin exhibited greater inhibition of twitching motility (within the range of 40 to 60 mm), while both treatments enhanced swarming motility.
Conclusion: The bacteriocin derived from L. plantarum demonstrated greater efficacy than polymyxin B in inhibiting biofilm formation and associated virulence factors, such as surface hydrophobicity and alginate production in P. aeruginosa. Thus, this bacteriocin may serve as a promising alternative strategy for managing antibiotic-resistant bacterial infections.

 
Keywords: Antibiotics, Probiotics, Polymyxin B, Bacteriocin, Lactobacillus plantarum
Full-Text [PDF 723 kb]   (106 Downloads)    
Type of Study: Research | Subject: medicine, paraclinic
Received: 2024/12/29 | Revised: 2025/04/28 | Accepted: 2025/02/18 | Published: 2025/04/22
References
1. Carroll KC, Hobden JA, Miller S, Morse SA, Mietzner TA, Detrick B, et al. Jawetz, Melnick & Adelberg's Medical Microbiology, 27e. McGraw-Hill Education, United States; 2015.
2. Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science. 1999; 284(5418): 1318-22. doi:10.1126/science.284.5418.1318 PMid:10334980
3. Beyenal H, Lewandowski Z, Harkin G. Quantifying biofilm structure: facts and fiction. Biofouling. 2004; 20(1): 1-23. doi:10.1080/0892701042000191628 PMid:15079889
4. Barbosa MS, Todorov SD, Jurkiewicz CH, Franco BDGM. Bacteriocin production by Lactobacillus curvatus MBSa2 entrapped in calcium alginate during ripening of salami for control of Listeria monocytogenes. Food Control. 2015; 47: 147-53. doi:10.1016/j.foodcont.2014.07.005
5. Malhotra S, Hayes Jr D, Wozniak DJ. Cystic fibrosis and Pseudomonas aeruginosa: the host-microbe interface. Clin Microbiol Rev. 2019; 32(3): e00138-18. doi:10.1128/CMR.00138-18 PMid:31142499 PMCid:PMC6589863
6. Ma S, Zhao Y, Xia X, Dong X, Ge W, Li H. Effects of Streptococcus sanguinis Bacteriocin on Cell Surface Hydrophobicity, Membrane Permeability, and Ultrastructure of Candida Thallus. Biomed Res Int. 2015; 2015: 514152. doi:10.1155/2015/514152 PMid:26064919 PMCid:PMC4429188
7. Khaledzade S, Hejazi MA. Partial Purification and Characterization of produced Bacteriocins by Two East-Azarbayjan Native Isolates of Lactobacillus plantarum. FSCT. 2018; 15(83): 399-407.
8. Monteagudo-Mera A, Rastall RA, Gibson GR, Charalampopoulos D, Chatzifragkou A. Adhesion mechanisms mediated by probiotics and prebiotics and their potential impact on human health. AMBB. 2019; 103: 6463-72. doi:10.1007/s00253-019-09978-7 PMid:31267231 PMCid:PMC6667406
9. Rao KP, Kumar NH, Somashekaraiah R, Murali M, Sreenivasa MY. Probiotic attributes and inhibitory effects of Lactobacillus plantarum MYS84 against the growth and biofilm formation of Pseudomonas aeruginosa. Microbiol. 2021; 90(3): 361-9. doi:10.1134/S0026261721030103
10. De Vuyst L, Leroy F. Bacteriocins from lactic acid bacteria: production, purification, and food applications. Microb Physiol. 2007; 13(4): 194-9. doi:10.1159/000104752 PMid:17641588 doi:10.1159/000104752 PMid:17827969
11. Rao KP, Kumar NH, Somashekaraiah R, Murali M, Sreenivasa MY. Probiotic attributes and inhibitory effects of Lactobacillus plantarum MYS84 against the growth and biofilm formation of Pseudomonas aeruginosa. Microbiol. 2021; 90(3):361-9. doi:10.1134/S0026261721030103
12. De Vries MC, Vaughan EE, Kleerebezem M, de Vos WM. Lactobacillus plantarum-survival, functional and potential probiotic properties in the human intestinal tract. Int Dairy J. 2006; 16(9): 1018-28. doi:10.1016/j.idairyj.2005.09.003 doi:10.1016/j.idairyj.2005.09.003
13. Forestier C, De Champs C, Vatoux C, Joly B. Probiotic activities of Lactobacillus casei rhamnosus: in vitro adherence to intestinal cells and antimicrobial properties. Res J Microbiol. 2001; 152(2): 167-73. doi:10.1016/S0923-2508(01)01188-3 PMid:11316370
14. Dubashynskaya NV, Skorik YA. Polymyxin delivery systems: Recent advances and challenges. Pharmaceuticals. 2020;13(5):83. doi:10.3390/ph13050083 PMid:32365637 PMCid:PMC7281078
15. Islam R, Hossain N, Alam K, Uddin E, Hasan Rony M, Imran AS, Alam F. Antibacterial Activity of Lactic Acid Bacteria and Extraction of Bacteriocin Protein. ABB. 2020;11:49-59. doi:10.4236/abb.2020.112004
16. Davarzani F, Saidi N, Besharati S, Saderi H, Rasooli I, Owlia P. Evaluation of Antibiotic Resistance Pattern, Alginate and Biofilm Production in Clinical Isolates of Pseudomonas aeruginosa. Iran J Public Health. 2021; 50(2): 341-49. doi:10.18502/ijph.v50i2.5345
17. Mirani ZA, Fatima A, Urooj S, Aziz M, Khan MN, Abbas T. Relationship of cell surface hydrophobicity with biofilm formation and growth rate: A study on Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli. Iran J Basic Med Sci. 2018; 21: 760-69. doi:10.22038/IJBMS.2018.26479.6483 PMid:30214685 PMCid:PMC6132666
18. Hayat S, Sabri AN, McHugh TD. Chloroform extract of turmeric inhibits biofilm formation, EPS production and motility in antibiotic-resistant bacteria. J Gen Appl Microbiol. 2017;63:325-38. doi:10.2323/jgam.2017.02.003 PMid:29046500
19. Skariyachan S, Sridhar VS, Packirisamy S, Kumargowda ST, Challapilli SB. Recent perspectives on the molecular basis of biofilm formation by Pseudomonas aeruginosa and approaches for treatment and biofilm dispersal. Folia Microbiol. 2018; 63: 413-32. doi:10.1007/s12223-018-0585-4 PMid:29352409
20. Ciofu O, Tolker-Nielsen T. Tolerance and resistance of Pseudomonas aeruginosa biofilms to antimicrobial agents-how P. aeruginosa can escape antibiotics. Front Microbiol. 2019; 10: 913. doi:10.3389/fmicb.2019.00913 PMid:31130925 PMCid:PMC6509751
21. Zadsafar F, Zargar M, Aghaei SS. Determine the antimicrobial susceptibility of Pseudomonas aeruginosa strains isolated from raw milk. Appl Biol. 2016;10(3):60-70.
22. Al-Dulaimi M, Algburi A, Abdelhameed A, Mazanko MS, Rudoy DV, Ermakov AM, et al. Antimicrobial and Anti-Biofilm Activity of Polymyxin E Alone and in Combination with Probiotic Strains of Bacillus subtilis KATMIRA1933 and Bacillus amyloliquefaciens B-1895 against Clinical Isolates of Selected Acinetobacter spp.: A Preliminary Study. Pathogens. 2021;10(12):1574. doi:10.3390/pathogens10121574 PMid:34959528 PMCid:PMC8707300
23. Chappell TC, Nair NU. Engineered lactobacilli display anti-biofilm and growth suppressing activities against Pseudomonas aeruginosa. npj Biofilms Microbiomes. 2020;6(1):48. doi:10.1038/s41522-020-00158-4 PMid:33127905 PMCid:PMC7599236
24. Chi H, Holo H. Synergistic antimicrobial activity between the broad spectrum bacteriocin garvicin KS and nisin, farnesol and polymyxin B against gram-positive and gram-negative bacteria. Curr Microbiol. 2018;75:272-7. doi:10.1007/s00284-017-1377-9 PMid:29063968
25. Burgos MJG, López RL, Aguayo MdCL, Pulido RP, Gálvez A. Inhibition of planktonic and sessile Salmonella enterica cells by combinations of enterocin AS-48, polymyxin B and biocides. Food Control. 2013; 30(1): 214-21. doi:10.1016/j.foodcont.2012.06.039
26. Klaenhammer T, Fremaux C, Ahn C, Milton K. Molecular biology of bacteriocins produced by Lactobacillus. Bacteriocins of lactic acid bacteria. Elsevier; 1993. p. 151-80. doi:10.1016/B978-0-12-355510-6.50015-4
27. Zhu Y, Lu J, Han ML, Jiang X, Azad MA, Patil NA, et al. Polymyxins bind to the cell surface of unculturable Acinetobacter baumannii and cause unique dependent resistance. Adv Sci. 2020; 7(15): 2000704. doi:10.1002/advs.202000704 PMid:32775156 PMCid:PMC7403960
28. Al-Azzawi MK, Makharmash JH, Al-Malkey NK. The effect of Lactobacillus species on Pseudomonas aeruginosa. DIT. 2020;14(2).
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Tajik M, Noorbakhsh F, Mahdavi Ortakand M. Evaluation of the effects of polymyxin B and bacteriocin extracted from Lactobacillus plantarum on surface hydrophobicity, alginate production, motility, and biofilm formation in Pseudomonas aeruginosa. Feyz Med Sci J 2025; 29 (1) :1-11
URL: http://feyz.kaums.ac.ir/article-1-5289-en.html


Creative Commons License
This open access journal is licensed under a Creative Commons Attribution-NonCommercial ۴.۰ International License. CC BY-NC ۴. Design and publishing by Kashan University of Medical Sciences.
Copyright ۲۰۲۳© Feyz Medical Sciences Journal. All rights reserved.
Volume 29, Issue 1 (Bimonthly 2025) Back to browse issues page
مجله علوم پزشکی فیض Feyz Medical Sciences Journal
Persian site map - English site map - Created in 0.04 seconds with 44 queries by YEKTAWEB 4710