[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Indexing Sources::
Guide for Authors::
Online Submission::
Ethics::
Articles archive::
For Reviewers::
Contact us::
AI::
::
Basic and Clinical Biochemistry and Nutrition
..
DOAJ
..
CINAHL
..
EBSCO
..
IMEMR
..
ISC
..
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
enamad
..
:: Volume 28, Issue 6 (Bimonthly 2024) ::
Feyz Med Sci J 2024, 28(6): 646-652 Back to browse issues page
Estimation of skin entrance dose and effective dose in neonates during common radiographic tests in public hospitals in Sari, Iran
Gholamreza Fallahmohammadi * , Amir Saemian , Mobina Darbayar
Department of Radiology, Faculty of Allied Medicine, Mazandaran University of Medical Sciences, Sari, Iran , rezfallah@gmail.com
Abstract:   (2550 Views)
Background and Aim: Radiography plays a crucial role in diagnosing neonatal abnormalities. Due to the heightened sensitivity of neonates to ionizing radiation, the small size of their body parts, the proximity of their organs, and their longer life expectancy, there is an increased risk of biological effects from radiation exposure. Therefore, estimating the received radiation dose in neonates is essential. This study aimed to evaluate the skin entrance dose (ESD) and effective dose in neonates admitted to the neonatal intensive care unit (NICU) from common radiographic tests.
Methods: In this study, the skin entrance dose (ESD) was measured in 50 neonates in the NICU who underwent chest, abdominal, pelvic, and skull radiography. Air kerma at a distance of one meter from the X-ray tube was measured. The air kerma at the skin entrance site was then calculated, considering the distance from the tube to the film and the thickness of the anatomical region being radiographed. ESD was obtained by multiplying the air kerma by the backscatter factor. Furthermore, the effective dose was computed from the ESD using appropriate conversion factors.
Results: The average ESD for chest, abdominal, pelvic, and skull radiographs were 0.3, 0.57, 0.43, and 1.01 milligray (mGy), respectively. The highest effective dose was observed in abdominal and pelvic radiography. Kilovoltage and milliampere-seconds, as the most significant factors affecting ESD, were reported to be 47.2 and 4.8 for chest radiography. The ESD values for chest and abdominal radiographs were higher than international standards, while the ESD values for skull and pelvic radiographs showed no significant difference from the diagnostic reference levels (DRL).
Conclusion: The results indicate that neonates received higher doses in chest and abdominal radiographs compared to the standard thresholds. The technical conditions used in these radiographic tests, especially for chest radiography, did not align with the recommended standards. Therefore, reviewing and adjusting imaging techniques for these tests is necessary. Medical imaging centers should select exposure conditions that reduce the effective dose received by neonates while maintaining image quality. It is recommended to use high kilovoltage (kV) and low milliampere (mA) settings for radiography of the neonate's torso (chest, abdomen, and pelvis).
Keywords: Neonates, Radiography, Skin entrance dose, Effective dose, Biological effects of radiation
Full-Text [PDF 466 kb]   (2193 Downloads)    
Type of Study: Research | Subject: medicine, paraclinic
Received: 2024/09/17 | Revised: 2025/02/5 | Accepted: 2024/12/9 | Published: 2025/02/5
References
1. Aramesh M, Zanganeh KA, Dehdashtian M, Malekian A, Fatahiasl J. Evaluation of radiation dose received by premature neonates admitted to neonatal intensive care unit. J Clin Med Res. 2017; 9(2):124. doi:10.14740/jocmr2796w PMid:28090228 PMCid:PMC5215016
2. Rose A, Rae W. A survey of radiation safety training among South African interventionalists. Afr J Health Prof Educ. 2018; 10(1): 10-2. doi:10.7196/AJHPE.2018.v10i1.981
3. Mathur AM, Neil JJ, McKinstry RC, Inder TE. Transport, monitoring, and successful brain MR imaging in unsedated neonates. Pediatr Radiol. 2008; 38(3): 260-4. doi:10.1007/s00247-007-0705-9 PMid:18175110
4. Datz H, Ben-Shlomo A, Bader D, Sadetzki S, Juster-Reicher A, Marks K, et al. The additional dose to radiosensitive organs caused by using under-collimated X-ray beams in neonatal intensive care radiography. Radiat Prot Dosimetry. 2008;130(4):518-24. doi:10.1093/rpd/ncn090 PMid:18375467
5. Faghihi R, Mehdizadeh S, Sina S, Alizadeh FN, Zeinali B, Kamyab GR, et al. Radiation dose to neonates undergoing X-ray imaging in special care baby units in Iran. Radiat Prot Dosimetry. 2012;150 (1):55-9. doi:10.1093/rpd/ncr373 PMid:22128357
6. Smans K, Struelens L, Smet M, Bosmans H, Vanhavere F. Patient dose in neonatal units. Radiat Prot Dosimetry. 2008; 131(1): 143-7. doi:10.1093/rpd/ncn237 PMid:18757900
7. Toossi MTB, Malekzadeh M. Radiation dose to newborns in neonatal intensive care units. Iran J Radiol. 2012;9(3):145. doi:10.5812/iranjradiol.8065 PMid:23329980 PMCid:PMC3522370
8. Khong P, Ringertz H, Donoghue V, Frush D, Rehani M, Appelgate K, et al. ICRP publication 121: radiological protection in paediatric diagnostic and interventional radiology. Ann ICRP. 2013;42(2):1-63. doi:10.1016/j.icrp.2012.10.001 PMid:23218172
9. Bosmans H, Damilakis J, Ducou le Pointe H, Foley SJ. Radiation protection no. 185 European guidelines on diagnostic reference levels for paediatric imaging. 2018.
10. Protection R. ICRP publication 103. Ann ICRP. 2007; 37(2.4): 2.
11. Asadinezhad M, Bahreyni Toossi MT. Doses to patients in some routine diagnostic X-ray examinations in Iran: proposed the first Iranian diagnostic reference levels. Radiat Prot Dosimetry. 2008;132(4):409-14. doi:10.1093/rpd/ncn308 PMid:19106177
12. Gislason-Lee AJ. Patient X-ray exposure and ALARA in the neonatal intensive care unit: global patterns. Pediatr Neonatol. 2021;62(1):3-10. doi:10.1016/j.pedneo.2020.10.009 PMid:33349597
13. Moores B. Radiation dose measurement and optimization. Br J Radiol. 2005;78(933):866-8. doi:10.1259/bjr/18002911 PMid:16110115
14. Olgar T, Onal E, Bor D, Okumus N, Atalay Y, Turkyilmaz C, et al .Radiation exposure to premature infants in a neonatal intensive care unit in Turkey. Korean J Radiol. 2008;9(5):416-9. doi:10.3348/kjr.2008.9.5.416 PMid:18838850 PMCid:PMC2627210
15. Pernicka F, McLean ID. Dosimetry in diagnostic radiology: an international code of practice. Vienna, Austria: International Atomic Energy Agency; 2007.
16. Ofori K, Gordon SW, Akrobortu E, Ampene AA, Darko EO. Estimation of adult patient doses for selected X-ray diagnostic examinations. J Radiat Res Appl Sci. 2014;7(4):459-62. doi:10.1016/j.jrras.2014.08.003
17. Alomairy N, Hadi D, Al-Zaid A, Fasikh R, Arif R, Al-Hazmi R, et al. Evaluation of the Entrance Surface Doses (ESD) for common diagnostic X-ray examinations. J Radiation Res Appl Sci. 2023; 16(4):100754. doi:10.1016/j.jrras.2023.100754
18. Petoussi-Henss N, Zankl M, Drexler G, Panzer W, Regulla D. Calculation of backscatter factors for diagnostic radiology using Monte Carlo methods. Physics Med Biol. 1998;43(8):2237. doi:10.1088/0031-9155/43/8/017 PMid:9725601
19. Wall BF, Haylock R, Jansen JT, Hillier MC, Hart D, Shrimpton PC. Radiation risks from medical X-ray examinations as a function of the age and sex of the patient. Didcot: Health Protection Agency; 2011.
20. Hart D, Wall B. Radiation exposure of the UK population from medical and dental X-ray examinations: NRPB Chilton, UK; 2002.
21. Ladia A, Skiadopoulos S, Kalogeropoulou C, Zampakis P, Dimitriou G, Panayiotakis G. Radiation dose and image quality evaluation in paediatric radiography. Int J New Technol Res. 2016; 2(3): 263590.
22. Hart D, Hillier M, Wall B. Doses to patients from medical X-ray examinations in the UK-2000 review: National Radiological Protection Board Chilton, UK; 2002.
23. Karami V, Zabihzadeh M, Keshtkar M. Evaluation of the entrance surface dose (ESD) and radiation dose to the radiosensitive organs in pediatric pelvic radiography. Int J Pediatr. 2017;5(6):5013-22.
24. Ahmadi A, Negarestani A, Sina S, Sarshough S. Measurement of entrance skin dose and the dose received by different organs in panoramic dental imaging. J Biomed Phys Eng. 2020;10(5):569. doi:10.31661/jbpe.v0i0.878 PMid:33134215 PMCid:PMC7557459
25. Panahi F, Mohammadi M, Naserpour F, Hassanpour N, Gholami M. Entrance dose determination and effective dose calculation in chest and skull radiographies: an experimental and computational study. Int J Radiat Res. 2021; 19(4): 899-906. doi:10.52547/ijrr.19.4.16
26. Omrane LB, Verhaegen F, Chahed N, Mtimet S. An investigation of entrance surface dose calculations for diagnostic radiology using Monte Carlo simulations and radiotherapy dosimetry formalisms. Physics Med Biol. 2003;48(12):1809. doi:10.1088/0031-9155/48/12/310 PMid:12870585
27. Herrmann TL, Fauber TL, Gill J, Hoffman C, Orth DK, Peterson PA, et al. Best practices in digital radiography. Radiol Technol. 2012; 84(1): 83-9.
28. Knight SP. A paediatric X‐ray exposure chart. J Med Radiat Sci. 2014;61(3):191-201. doi:10.1002/jmrs.56 PMid:26229655 PMCid:PMC4175850
29. Martin L, Ruddlesden R, Makepeace C, Robinson L, Mistry T, Starritt H. Paediatric x-ray radiation dose reduction and image quality analysis. J Radiol Prot. 2013;33(3):621. doi:10.1088/0952-4746/33/3/621 PMid:23803575
30. Perlmutter N, Arthur R, Beluffi G, Cook V, Horwitz E, Kramer P, et al. The quality criteria for diagnostic radiographic images in paediatrics. Radiat Protect Dosimetry. 1998; 80(1-3):45-8. doi:10.1093/oxfordjournals.rpd.a032539
31. Liu H, Zhuo W, Chen B, Yi Y, Li D. Patient doses in different projections of conventional diagnostic X-ray examinations. Radiat Prot Dosimetry. 2008;132(3):334-8. doi:10.1093/rpd/ncn284 PMid:18977775
32. Ogundare F, Uche C, Balogun F. Radiological parameters and radiation doses of patients undergoing abdomen, pelvis and lumbar spine X-ray examinations in three Nigerian hospitals. Br J Radiol. 2004;77(923):934-40. doi:10.1259/bjr/55841517 PMid:15507418
33. Zewdu M, Kadir E, Berhane M. Assessment of pediatrics radiation dose from routine x-ray examination at Jimma University Hospital, Southwest Ethiopia. Ethiop J Health Sci. 2017;27(5):481-90. doi:10.4314/ejhs.v27i5.6 PMid:29217953 PMCid:PMC5615009
34. Mohammadain K, Rossa L, Zevedo C, Gvebel M. Dose evaluation for pediatric chest examination in Brazil and Sudan. Low doses and reliable examinations can be achieved in developing countries. J Phys Med Biol. 2004;49:1017-31. doi:10.1088/0031-9155/49/6/012 PMid:15104324
35. Abdallah Y. Measurement of Entrance Skin Dose in Radiographic Examinations of Pediatric Patients. Curr Med Imaging. 2021;17(11):1385-9. doi:10.2174/1573405617666210628162238 PMid:34182913
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Fallahmohammadi G, Saemian A, Darbayar M. Estimation of skin entrance dose and effective dose in neonates during common radiographic tests in public hospitals in Sari, Iran. Feyz Med Sci J 2024; 28 (6) :646-652
URL: http://feyz.kaums.ac.ir/article-1-5235-en.html


Creative Commons License
This open access journal is licensed under a Creative Commons Attribution-NonCommercial ۴.۰ International License. CC BY-NC ۴. Design and publishing by Kashan University of Medical Sciences.
Copyright ۲۰۲۳© Feyz Medical Sciences Journal. All rights reserved.
Volume 28, Issue 6 (Bimonthly 2024) Back to browse issues page
مجله علوم پزشکی فیض Feyz Medical Sciences Journal
Persian site map - English site map - Created in 0.05 seconds with 46 queries by YEKTAWEB 4710