[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Indexing Sources::
Guide for Authors::
Online Submission::
Ethics::
Articles archive::
For Reviewers::
Contact us::
::
Biochemistry and Nutrition in Metabolic Diseases
..
DOAJ
..
CINAHL
..
EBSCO
..
IMEMR
..
ISC
..
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
enamad
..
:: Volume 28, Issue 3 (August-September 2024) ::
Feyz Med Sci J 2024, 28(3): 307-316 Back to browse issues page
Identification of common mutations and their frequency in METTL5, METTL7A, and METTL7B genes in gastrointestinal cancers based on in silico data
Soraya Heydari , Maryam Peymani * , Mehrdad Hashemi , Kamran Ghaedi , Maliheh Entezari
Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran & Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran , m.peymani@iaushk.ac.ir
Abstract:   (246 Views)
Background and Aim: Identifying key genes involved in the development of gastrointestinal cancers is crucial for understanding the molecular mechanisms underlying these diseases and for developing effective therapeutic and diagnostic strategies. Members of the METTL gene family are known to participate in various biological functions and play significant roles in tumorigenesis. This study aims to identify common mutations and their frequencies in three selected genes from this family: METTL5, METTL7A, and METTL7B, in the context of gastrointestinal cancers.
Methods: We utilized DNA sequencing data available for each sample in the TCGA database to identify common mutations and their frequencies in the candidate genes. The MAF data for relevant cancers were downloaded, and the Maftools package was employed to evaluate the frequency and types of mutations across all samples.
Results: Mutations in the METTL5, METTL7A, and METTL7B genes were observed in colorectal and stomach cancers, with additional reports of mutations in esophageal, liver, and pancreatic cancers. The frequency of SNP mutations and missense mutations in these genes was found to be higher than reported in previous studies.
Conclusion: SNP mutations and missense mutations were the most prevalent alterations identified in the METTL5, METTL7A, and METTL7B genes compared to other reports. While in silico screening provides a valuable initial step in identifying mutated genes with potential causal roles in cancer, further experimental validation is necessary.
Keywords: Gastrointestinal cancers, METTL genes, Gene mutations
Full-Text [PDF 582 kb]   (60 Downloads)    
Type of Study: Research | Subject: medicine, paraclinic
Received: 2024/01/29 | Revised: 2024/09/8 | Accepted: 2024/07/24 | Published: 2024/08/31
References
1. Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA Cancer J Clin. 2013; 63(1):11-30.
2. Fisher R, Pusztai L, Swanton C. Cancer heterogeneity: implications for targeted therapeutics. Br J Cancer. 2013; 108(3):479-85.
3. Meacham CE, Morrison SJ. Tumour heterogeneity and cancer cell plasticity. Nature. 2013; 501(7467):328-37.
4. Ferlay J, Ervik M, Lam F, Colombet M, Mery L, Piñeros M, et al. Global cancer observatory: cancer today. Lyon: International Agency for Research on Cancer; 2020. 2021.
5. Aizawa K, Liu C, Tang S, Veeramachaneni S, Hu KQ, Smith DE, Wang XD. Tobacco carcinogen induces both lung cancer and non‐alcoholic steatohepatitis and hepatocellular carcinomas in ferrets which can be attenuated by lycopene supplementation. Int J Cancer. 2016; 139(5):1171-81.
6. Poon SL, McPherson JR, Tan P, Teh BT, Rozen SG. Mutation signatures of carcinogen exposure: genome-wide detection and new opportunities for cancer prevention. Genome Med. 2014; 6:1-14.
7. Trafialek J ,Kolanowski W. Dietary exposure to meat-related carcinogenic substances: is there a way to estimate the risk? International journal of food sciences and nutrition. 2014; 65(6):774-80.
8. Cumberbatch MG, Cox A, Teare D, Catto JW. Contemporary occupational carcinogen exposure and bladder cancer: a systematic review and meta-analysis. JAMA oncology. 2015; 1(9):1282-90.
9. Antwi SO, Eckert EC, Sabaque CV, Leof ER, Hawthorne KM, Bamlet WR, Chaffee KG, Oberg AL, Petersen GM. Exposure to environmental chemicals and heavy metals, and risk of pancreatic cancer. Cancer Causes Control. 2015; 26:1583-91.
10. Parkin DM. The global health burden of infection‐associated cancers in the year 2002. Int J Cancer. 2006; 118(12):3030-44.
11. Seto M, Honma K, Nakagawa M. Diversity of genome profiles in malignant lymphoma. Cancer Sci. 2010; 101(3):573-78.
12. Cigudosa JC, Parsa NZ, Louie DC, Filippa DA, Jhanwar SC, Johansson B, Mitelman F, Chaganti R. Cytogenetic analysis of 363 consecutively ascertained diffuse large B‐cell lymphomas. Genes Chromosomes Cancer. 1999; 25(2):123-33.
13. Shtivelman E, Lifshitz B, Gale RP, Canaani E. Fused transcript of abl and bcr genes in chronic myelogenous leukaemia. Nature. 1985; 315(6020):550-54.
14. Matlashewski G, Lamb P, Pim D, Peacock J, Crawford L, Benchimol S. Isolation and characterization of a human p53 cDNA clone: expression of the human p53 gene. EMBO J. 1984; 3(13):3257-62.
15. Wei Q, Li L, Chen DJ. DNA repair, genetic instability, and cancer: World scientific; 2007.
16. lvarez-Buylla ER, Chaos Á, Aldana M, Benítez M, Cortes-Poza Y, Espinosa-Soto C, Hartasánchez DA, Lotto RB, Malkin D, Escalera Santos GJ. Floral morphogenesis: stochastic explorations of a gene network epigenetic landscape. PLoS One. 2008; 3(11):e3626.
17. Portela A, Esteller M. Epigenetic modifications and human disease. Nat Biotechnol. 2010; 28(10):1057-68.
18. Sharma S, Kelly TK, Jones PA. Epigenetics in cancer. Carcinogenesis. 2010; 31(1):27-36.
19. Ignatova VV, Jansen PW, Baltissen MP, Vermeulen M, Schneider R. The interactome of a family of potential methyltransferases in HeLa cells. Sci Rep. 2019; 9(1):6584.
20. Ying X, Liu B, Yuan Z, Huang Y, Chen C, Jiang X, et al. METTL1‐m7G‐EGFR/EFEMP1 axis promotes the bladder cancer development. Clin Translational Med. 2021; 11(12):e675.
21. Chen Z, Zhu W, Zhu S, Sun K, Liao J, Liu H, Dai Z, Han H, Ren X, Yang Q. METTL1 promotes hepatocarcinogenesis via m7G tRNA modification‐dependent translation control. Clin Translational Med. 2021; 11(12):e661.
22. Liao J, Yi Y, Yue X, Wu X, Zhu M, Chen Y, et al. Methyltransferase 1 is required for nonhomologous end‐joining repair and renders hepatocellular carcinoma resistant to radiotherapy. Hepatology. 2023; 77(6):1896-910.
23. Orellana EA, Liu Q, Yankova E, Pirouz M, De Braekeleer E, Zhang W, Lim J, Aspris D, Sendinc E, Garyfallos DA. METTL1-mediated m7G modification of Arg-TCT tRNA drives oncogenic transformation. Mol Cell. 2021; 81(16):3323.
24. Dai Z, Liu H, Liao J, Huang C, Ren X, Zhu W, et al. N7-Methylguanosine tRNA modification enhances oncogenic mRNA translation and promotes intrahepatic cholangiocarcinoma progression. Mol Cell. 2021; 81(16):3339-55. e8.
25. Zeng C, Huang W, Li Y, Weng H. Roles of METTL3 in cancer: mechanisms and therapeutic targeting. J Hematol Oncol. 2020; 13(1):1-15.
26. He J, Zhou M, Yin J, Wan J, Chu J, Jia J, et al. METTL3 restrains papillary thyroid cancer progression via m6A/c-Rel/IL-8-mediated neutrophil infiltration. Mol Ther. 2021; 29(5):1821-37.
27. Liu J, Eckert MA, Harada BT, Liu SM, Lu Z, Yu K, et al. m6A mRNA methylation regulates AKT activity to promote the proliferation and tumorigenicity of endometrial cancer. Nat Cell Biol. 2018; 20(9):1074-83.
28. Desany B, Zhang Z. Bioinformatics and cancer target discovery. Drug Discov Today. 2004; 9(18):795-802.
29. George Priya Doss C, Nagasundaram N, Chakraborty C, Chen L, Zhu H. Extrapolating the effect of deleterious nsSNPs in the binding adaptability of flavopiridol with CDK7 protein: a molecular dynamics approach. Human Genomics. 2013; 7(1):1-15.
30. Ng PC, Henikoff S. Predicting the effects of amino acid substitutions on protein function. Annu Rev Genomics Hum Genet. 2006; 7:61-80.
31. Wong JM, Eirin-Lopez JM. Evolution of methyltransferase-like (METTL) proteins in metazoa: a complex gene family involved in epitranscriptomic regulation and other epigenetic processes .Mol Biol Evol. 2021; 38(12):5309-27.
32. Colaprico A, Silva TC, Olsen C, Garofano L, Cava C, Garolini D, et al. TCGAbiolinks: an R/Bioconductor package for integrative analysis of TCGA data. Nucleic Acids Res. 2016; 44(8) :e71-e71.
33. Law CW, Alhamdoosh M, Su S, Smyth GK, Ritchie ME. RNA-seq analysis is easy as 1-2-3 with limma, Glimma and edgeR. F1000Res. 2016; 5.
34. Kassambara A, Kosinski M, Biecek P, Fabian S. Package ‘survminer’. Drawing Survival Curves using ‘ggplot2’(R package version 03 1). 2017:1-67.
35. Mayakonda A, Lin D-C, Assenov Y, Plass C, Koeffler HP. Maftools: efficient and comprehensive analysis of somatic variants in cancer. Genome Res. 2018; 28(11):1747-56.
36. Yang Y, Bedford MT. Protein arginine methyltransferases and cancer. Nat Rev Cancer. 2013; 13(1):37-50.
37. Ferlay J, Ervik M, Lam F, Colombet M, Mery L, Piñeros M, Znaor A, Soerjomataram I, Bray F. Global cancer Observatory: cancer today. Lyon, France: international agency for research on cancer. 2018.
38. Hassanpour SH, Dehghani M. Review of cancer from perspective of molecular. J Cancer Res Practice. 2017; 4(4):127-29.
39. Yang Z, Wang D, Zhang C, Liu H, Hao M, Kan S, et al. The applications of gold nanoparticles in the diagnosis and treatment of gastrointestinal cancer. Front Oncol. 2022; 11:5855.
40. Arnold M, Abnet CC, Neale RE, Vignat J, Giovannucci EL, McGlynn KA, et al. Global burden of 5 major types of gastrointestinal cancer. Gastroenterology. 2020; 159(1):335-49.
41. Pan F, Chen T, Sun X, Li K, Jiang X, Försti A, Zhu Y, Lai M. Prognosis prediction of colorectal cancer using gene expression profiles. Front Oncol. 2019; 9:252.
42. Duffy MJ. Tumor markers in clinical practice: a review focusing on common solid cancers. Med Princ Pract. 2012; 22(1):4-11.
43. Campeanu IJ, Jiang Y, Liu L, Pilecki M, Najor A, Cobani E, Manning M, Zhang XM, Yang Z-Q. Multi-omics integration of methyltransferase-like protein family reveals clinical outcomes and functional signatures in human cancer. Sci Rep. 2021; 11(1):14784.
44. Wang Z, He J, Bach DH, Huang Y-h, Li Z, Liu H, Lin P, Yang J. Induction of m 6 A methylation in adipocyte exosomal LncRNAs mediates myeloma drug resistance. J Exp Clin Cancer Res. 2022; 41:1-18.
45. Lee E, Kim JY, Kim TK, Park SY, Im GI. Methyltransferase-like protein 7A (METTL7A) promotes cell survival and osteogenic differentiation under metabolic stress. Cell Death Discovery. 2021; 7(1):154.
46. Delaunay S, Frye M. RNA modifications regulating cell fate in cancer. Nat Cell Biol. 2019; 21(5):552-59.
47. Barbieri I, Kouzarides T. Role of RNA modifications in cancer. Nat Rev Cancer. 2020; 20(6):303-22.
48. Okamoto M, Fujiwara M, Hori M, Okada K, Yazama F, Konishi H, Xiao Y, Qi G, Shimamoto F, Ota T. tRNA modifying enzymes, NSUN2 and METTL1, determine sensitivity to 5-fluorouracil in HeLa cells. PLoS Genet. 2014; 10(9):e1004639.
49. Tian QH, Zhang MF, Zeng JS, Luo RG, Wen Y, Chen J, et al. METTL1 overexpression is correlated with poor prognosis and promotes hepatocellular carcinoma via PTEN. J Mol Med. 2019; 97:1535-45.
50. Wang P, Doxtader KA, Nam Y. Structural basis for cooperative function of Mettl3 and Mettl14 methyltransferases. Mol Cell. 2016; 63(2):306-17.
51. Deng X, Su R, Feng X, Wei M, Chen J. Role of N6-methyladenosine modification in cancer. Curr Opin Genet Dev. 2018; 48:1-7.
52. Liu S, Hausmann S, Carlson SM, Fuentes ME, Francis JW, Pillai R, et al. METTL13 methylation of eEF1A increases translational output to promote tumorigenesis. Cell. 2019; 176(3):491-504. e21.
53. Małecki JM, Odonohue MF, Kim Y, Jakobsson ME, Gessa L, Pinto R, et al. Human METTL18 is a histidine-specific methyltransferase that targets RPL3 and affects ribosome biogenesis and function. Nucleic Acids Res. 2021; 49(6):3185-203.
54. Richard EM, Polla DL, Assir MZ, Contreras M, Shahzad M, Khan AA, et al. Bi-allelic variants in METTL5 cause autosomal-recessive intellectual disability and microcephaly. Am J Human Genetics. 2019; 105(4):869-78.
55. Mariasina SS, Chang CF, Petrova OA, Efimov SV, Klochkov VV, Kechko OI, et al. Williams–Beuren syndrome‐related methyltransferase WBSCR27: cofactor binding and cleavage. FEBS J. 2020; 287(24):5375-93.
56. Liu D, Li W, Zhong F, Yin J, Zhou W, Li S, et al. METTL7B is required for cancer cell proliferation and tumorigenesis in non-small cell lung cancer. Front Pharmacol. 2020; 11:178.
57. Duesberg P, Stindl R, Hehlmann R. Explaining the high mutation rates of cancer cells to drug and multidrug resistance by chromosome reassortments that are catalyzed by aneuploidy. Proceedings National Academy Sci. 2000; 97(26):14295-300.
58. Duesberg P, Stindl R, Hehlmann R. Origin of multidrug resistance in cells with and without multidrug resistance genes: chromosome reassortments catalyzed by aneuploidy. Proceedings National Academy Sci. 2001; 98(20): 11283-88.
59. Rozalski R, Gackowski D, Siomek‐Gorecka A, Banaszkiewicz Z, Olinski R. Urinary measurement of epigenetic DNA modifications: A non‐invasive assessment of the whole‐body epigenetic status in healthy subjects and colorectal cancer patients. ChemistryOpen. 2016; 5(6):550-53.
60. Shakeri H, Fakhrjou A, Nikanfar A, Mohaddes-Ardebili SM. Methylation Analysis of BRCA1 and APC in Breast Cancer and It's Relationship to Clinicopathological Features. Clin Laboratory. 2016; 62(12):2333-37.
61. Peng D, Zhang H, Sun G. The relationship between P16 gene promoter methylation and gastric cancer: a meta-analysis based on Chinese patients. J Cancer Res Ther. 2014; 10(Suppl 4):C292-C95.
62. Stephen JK, Chen KM, Merritt J, Chitale D, Divine G, Worsham MJ. Methylation markers for early detection and differentiation of follicular thyroid cancer subtypes. Cancer Clin Oncol. 2015; 4(2):1.
63. Levine AJ, Momand J, Finlay CA. The p53 tumour suppressor gene .Nature. 1991; 351(6326):453-56.
64. Hollstein M, Sidransky D, Vogelstein B, Harris CC. p53 mutations in human cancers. Science. 1991; 253(5015):49-53.
65. Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, et al. Mutations of the BRAF gene in human cancer. Nature. 2002; 417(6892):949-54.
66. Brett D, Lehmann G, Hanke J, Gross S, Reich J, Bork P. EST analysis online: WWW tools for detection of SNPs and alternative splice forms. Trends Genet. 2000; 16(9): 416-8.
67. Sherry ST, Ward M-H, Kholodov M, Baker J, Phan L, Smigielski EM, Sirotkin K. dbSNP: the NCBI database of genetic variation. Nucleic Acids Res. 2001; 29(1):308-11.
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Heydari S, Peymani M, Hashemi M, Ghaedi K, Entezari M. Identification of common mutations and their frequency in METTL5, METTL7A, and METTL7B genes in gastrointestinal cancers based on in silico data. Feyz Med Sci J 2024; 28 (3) :307-316
URL: http://feyz.kaums.ac.ir/article-1-5115-en.html


Creative Commons License
This open access journal is licensed under a Creative Commons Attribution-NonCommercial ۴.۰ International License. CC BY-NC ۴. Design and publishing by Kashan University of Medical Sciences.
Copyright ۲۰۲۳© Feyz Medical Sciences Journal. All rights reserved.
Volume 28, Issue 3 (August-September 2024) Back to browse issues page
مجله علوم پزشکی فیض Feyz Medical Sciences Journal
Persian site map - English site map - Created in 0.05 seconds with 46 queries by YEKTAWEB 4660