[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Indexing Sources::
Guide for Authors::
Online Submission::
Ethics::
Articles archive::
For Reviewers::
Contact us::
AI::
::
Basic and Clinical Biochemistry and Nutrition
..
DOAJ
..
CINAHL
..
EBSCO
..
IMEMR
..
ISC
..
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
enamad
..
:: Volume 28, Issue 1 (Bimothly 2024) ::
Feyz Med Sci J 2024, 28(1): 33-41 Back to browse issues page
Evaluation of the antibacterial activity of recombinant protein oncorhyncin II against Acinetobacter baumannii (ATCC19606) under in vitro conditions
Mozhdeh Safari , Robab Rafiei Tabatabaei , Hamid Abtahi * , Shohreh Fahimirad , Abbas Alimoradian
Molecular and Medical Research Center, Arak University of Medical Sciences, Arak, Iran , habtahi2001@yahoo.com
Abstract:   (1132 Views)
Background and Aim: Multi-drug resistant (MDR) Acinetobacter baumannii is a prevalent hospital pathogen. Antimicrobial peptides (AMPs), such as Oncorhyncin II, have been proposed for treating MDR pathogens. This study aimed to assess the antibacterial activity of recombinant protein Oncorhyncin II against Acinetobacter baumannii (ATCC19606) under in vitro conditions.
Methods: In this experimental study, the gene construct pET32a-oncorhyncin II was transferred to Escherichia coli BL21 (DE3) for expressing the recombinant Oncorhyncin II protein. Purification was optimized using nickel affinity chromatography (Ni-NTA), and the peptide's efficacy was evaluated by determining the minimum inhibitory concentration (MIC), bactericidal kinetics, and growth kinetics against Acinetobacter baumannii (ATCC19606).
Results: The recombinant Oncorhyncin II protein was successfully expressed in E. coli BL21 (DE3) and purified with over 70% purity. The MIC assay confirmed effective antibacterial activity of Oncorhyncin II against Acinetobacter baumannii at a concentration of 95.87 μg/ml. At 2x MIC, Oncorhyncin II led to a rapid reduction in viable cell count and decreased turbidity of the bacterial inoculum in bactericidal and growth kinetics assessments.
Conclusion: The produced recombinant Oncorhyncin II exhibited potent antibacterial activity against Acinetobacter baumannii. These findings can contribute to the development and production of novel antimicrobial drugs for treating infections caused by Acinetobacter baumannii.
Keywords: Antimicrobial Peptides, Recombinant Proteins, Acinetobacter baumannii
Full-Text [PDF 543 kb]   (837 Downloads)    
Type of Study: Research | Subject: General
Received: 2023/10/15 | Revised: 2024/05/1 | Accepted: 2024/01/8 | Published: 2024/03/13
References
1. Breslow JM, Meissler Jr JJ, Hartzell RR, Spence PB, Truant A, Gaughan J, et al. Innate immune responses to systemic Acinetobacter baumannii infection in mice: neutrophils, but not interleukin-17, mediate host resistance. Infect Immun. 2011; 79(8): 3317-27. doi:10.1128/IAI.00069-11 PMid:21576323 PMCid:PMC3147579
2. Zordan S, Prenger-Berninghoff E, Weiss R, van der Reijden T, van den Broek P, Baljer G, et al. Multidrug-resistant Acinetobacter baumannii in veterinary clinics, Germany. Emerg infect Dis. 2011; 17(9):1751. doi:10.3201/eid1709.101931 PMid:21888812 PMCid:PMC3322069
3. Safari M, Shojapour M, Akbari M, Pourbabaee A, Abtahi H. Dissemination of CTX-M-type beta-lactamase among clinical isolates of Enterobacteriaceae in Markazi province, Iran. Jundishapur J Microbiol. 2013;6(8). doi:10.5812/jjm.7182
4. López-Rojas R, Jiménez-Mejías ME, Lepe JA, Pachón J. Acinetobacter baumannii resistant to colistin alters its antibiotic resistance profile: a case report from Spain. J Infect Dis. 2011; 204(7):1147-8.doi:10.1093/infdis/jir476 PMid:21881133
5. Beceiro A, Llobet E, Aranda J, Bengoechea JA, Doumith M, Hornsey M, et al. Phosphoethanolamine modification of lipid A in colistin-resistant variants of Acinetobacter baumannii mediated by the pmrAB two-component regulatory system. Antimicrob Agents Chemother. 2011;55 (7):3370-9. doi:10.1128/AAC.00079-11 PMid:21576434 PMCid:PMC3122444
6. Spencer JJ, Pitts RE, Pearson RA, King LB. The effects of antimicrobial peptides WAM-1 and LL-37 on multidrug-resistant Acinetobacter baumannii. Pathog Dis. 2018;76(2): fty007. doi:10.1093/femspd/fty007 PMid:29370365
7. Albatineh A, Sohrabi R, Baghi V, Ghanei Gheshlagh R. Effect of vitamin D on Helicobacter pylori infection and eradication: An updated systematic review and meta‐analysis. Novel Clin Med, 2023; 2(3): 155-162. doi: 10.22034/ncm.2023.385278.1074
8. Ding B, Soblosky L, Nguyen K, Geng J, Yu X, Ramamoorthy A, et al. Physiologically-relevant modes of membrane interactions by the human antimicrobial peptide, LL-37, revealed by SFG experiments. Sci Rep. 2013;3(1):1854. doi:10.1038/srep01854 PMid:23676762 PMCid:PMC3655398
9. Fernandes JM, Molle G, Kemp GD, Smith VJ. Isolation and characterisation of oncorhyncin II, a histone H1-derived antimicrobial peptide from skin secretions of rainbow trout, Oncorhynchus mykiss. Dev Comp Immunol. 2004;28(2):127-38 doi:10.1016/S0145-305X(03)00120-4 PMid:12969798
10. Waghu FH, Joseph S, Ghawali S, Martis EA, Madan T, Venkatesh KV, et al. Designing antibacterial peptides with enhanced killing kinetics. Front Microbiol. 2018;9:325 doi:10.3389/fmicb.2018.00325 PMid:29527201 PMCid:PMC5829097
11. Robinette D, Wada S, Arroll T, Levy M, Miller W, Noga E. Antimicrobial activity in the skin of the channel catfish Ictalurus punctatus: characterization of broad-spectrum histone-like antimicrobial proteins. Cell Mol Life Sci CMLS. 1998; 54:467-75. doi:10.1007/s000180050175 PMid:9645227
12. Mahmoudi S, Abtahi H, Bahador A, Mosayebi G, Salmanian A. Production of recombinant streptokinase in E. coli and reactivity with immunized mice. Pak J Biol Sci. 2010; 13(8): 380-4. doi:10.3923/pjbs.2010.380.384 PMid:20836298
13. Jafari SF, Ghaznavi-Rad E, Fahimirad S, Abtahi H. Recombinant oncorhyncin II effect on the treatment of methicillin-resistant Staphylococcus aureus skin infection. Jundishapur J Microbiol. 2020; 13(4). doi:10.5812/jjm.95948
14. Sivashanmugam A, Murray V, Cui C, Zhang Y, Wang J, Li Q. Practical protocols for production of very high yields of recombinant proteins using Escherichia coli. Protein Sci. 2009;18(5):936-48. doi:10.1002/pro.102 PMid:19384993 PMCid:PMC2771296
15. Farjadi V, Abtahi H, Zolfaghari M, Soufian S, Hasanzadeh L. Expression, purification and evaluation of antigenicity of CagA antigenic fragment of. Helicobacter Pylori. 2013:1-6. doi:10.5812/jjm.7367
16. Fahimirad S, Ghaznavi-Rad E, Abtahi H, Sarlak N. Antimicrobial activity, stability and wound healing performances of chitosan nanoparticles loaded recombinant LL37 antimicrobial peptide. Int J Peptide Res Ther. 2021; 27(4):2505-15. doi:10.1007/s10989-021-10268-y
17. Yamaguchi H, Miyazaki M. Refolding techniques for recovering biologically active recombinant proteins from inclusion bodies. Biomolecules. 2014;4(1):235-51. doi:10.3390/biom4010235 PMid:24970214 PMCid:PMC4030991
18. Satei P, Ghaznavi-Rad E, Fahimirad S, Abtahi H. Recombinant production of Trx-Ib-AMP4 and Trx-E50-52 antimicrobial peptides and antimicrobial synergistic assessment on the treatment of methicillin-resistant Staphylococcus aureus under in vitro and in vivo situations. Protein Expr Purif. 2021; 105949. doi:10.1016/j.pep.2021.105949 PMid:34324967
19. Abtahi H, Salmanian AH, Rafati S, Behzadian Nejad G, Mohammad Hassan Z. High level expression of recombinant ribosomal protein (L7/L12) from Brucella abortus and its reaction with infected human sera. Iran Biomedical J. 2004; 8(1): 8-13.
20. Clinical, Institute LS. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard. Clinical and Laboratory Standards Institute Wayne, PA; 2012.
21. Abtahi H, Ghazavi A, Karimi M, Mollaghasemi S, Mosayebi G. Antimicrobial activities of water and methanol extracts of bitter apricot seeds. J Med Sci. 2008;8(4):433-6. doi:10.3923/jms.2008.433.436
22. Dangel A, Ackermann N, Abdel‐Hadi O, Maier R, Önder K, Francois P, et al. A de novo‐designed antimicrobial peptide with activity against multiresistant Staphylococcus aureus acting on RsbW kinase. FASEB J. 2013;27(11):4476-88. doi:10.1096/fj.13-234575 PMid:23901070
23. Elshikh M, Ahmed S, Funston S, Dunlop P, McGaw M, Marchant R, et al. Resazurin-based 96-well plate microdilution method for the determination of minimum inhibitory concentration of biosurfactants. Biotechnol Lett. 2016;38:1015-9. doi:10.1007/s10529-016-2079-2 PMid:26969604 PMCid:PMC4853446
24. Fahimirad S, Razavi SH, Abtahi H, Alizadeh H, Ghorbanpour M. Recombinant production and antimicrobial assessment of beta casein-IbAMP 4 as a novel antimicrobial polymeric protein and its synergistic effects with thymol. Int J Peptide Res Ther. 2018;24:213-22. doi:10.1007/s10989-017-9605-5
25. Gopal R, Kim YG, Lee JH, Lee SK, Chae JD, Son BK, et al. Synergistic effects and antibiofilm properties of chimeric peptides against multidrug-resistant Acinetobacter baumannii strains. Antimicrob Agents Chemother. 2014;58(3):1622-9. doi:10.1128/AAC.02473-13 PMid:24366740 PMCid:PMC3957903
26. Ganz T. Defensins: antimicrobial peptides of innate immunity. Nat Rev Immunol. 2003;3(9):710-20. doi:10.1038/nri1180 PMid:12949495
27. Guo Y, Wang L, Lei J, Xu J, Han L. Antimicrobial and antibiofilm activity of human cationic antibacterial peptide (Ll-37) and its analogs against Pan-Drug-resistant Acinetobacter baumannii. Jundishapur J Microbiol. 2017;10(3). doi:10.5812/jjm.35857
28. Ranjbaran M, Zolfaghari M, Japoni-Nejad A, Amouzandeh-Nobaveh A, Abtahi H, Nejad M, et al. Molecular investigation of integrons in Escherichia coli and Klebsiella pneumoniae isolated from urinary tract infections. J Mazandaran Univ Med Sci. 2013; 23(105):7-10.
29. Miragaia M. Factors contributing to the evolution of mecA-mediated β-lactam resistance in staphylococci: update and new insights from whole genome sequencing (WGS). Front Microbiol. 2018;9:2723. doi:10.3389/fmicb.2018.02723 PMid:30483235 PMCid:PMC6243372
30. Sadeghi S, Bakhshandeh H, Ahangari Cohan R, Peirovi A, Ehsani P, Norouzian D. Synergistic anti-staphylococcal activity of niosomal recombinant lysostaphin-LL-37. Int J Nanomedicine. 2019:9777-92. doi:10.2147/IJN.S230269 PMid:31849468 PMCid:PMC6911324
31. Birkemo GA, Lüders T, Andersen Ø, Nes IF, Nissen-Meyer J. Hipposin, a histone-derived antimicrobial peptide in Atlantic halibut (Hippoglossus hippoglossus L.). Biochim Biophys Acta. 2003;1646(1-2):207-15. doi:10.1016/S1570-9639(03)00018-9
32. Lüders T, Birkemo GA, Nissen-Meyer J, Andersen Ø, Nes IF. Proline conformation-dependent antimicrobial activity of a proline-rich histone h1 N-terminal Peptide fragment isolated from the skin mucus of Atlantic salmon. Antimicrob Agents Chemother. 2005;49(6):2399-406. doi:10.1128/AAC.49.6.2399-2406.2005 PMid:15917539 PMCid:PMC1140541
33. Jacobsen F, Baraniskin A, Mertens J, Mittler D, Mohammadi-Tabrisi A, Schubert S, et al. Activity of histone H1. 2 in infected burn wounds. J Antimicrob Chemother. 2005;55(5):735-41. doi:10.1093/jac/dki067 PMid:15772144
34. Noga EJ, Borron PJ, Hinshaw J, Gordon WC, Gordon LJ, Seo J-K. Identification of histones as endogenous antibiotics in fish and quantification in rainbow trout (Oncorhynchus mykiss) skin and gill. Fish Physiol Biochem. 2011;37:135-52 doi:10.1007/s10695-010-9422-7 PMid:20711849
35. Fu B, Lin H, Ramesh Pavase T, Mi N, Sui J. Extraction, identification, modification, and antibacterial activity of histone from immature testis of Atlantic salmon. Mar Drugs. 2020; 18(3): 133. doi:10.3390/md18030133 PMid:32111010 PMCid:PMC7142871
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

safari M, Rafiei Tabatabaei R, abtahi H, Fahimirad S, Alimoradian A. Evaluation of the antibacterial activity of recombinant protein oncorhyncin II against Acinetobacter baumannii (ATCC19606) under in vitro conditions. Feyz Med Sci J 2024; 28 (1) :33-41
URL: http://feyz.kaums.ac.ir/article-1-5017-en.html


Creative Commons License
This open access journal is licensed under a Creative Commons Attribution-NonCommercial ۴.۰ International License. CC BY-NC ۴. Design and publishing by Kashan University of Medical Sciences.
Copyright ۲۰۲۳© Feyz Medical Sciences Journal. All rights reserved.
Volume 28, Issue 1 (Bimothly 2024) Back to browse issues page
مجله علوم پزشکی فیض Feyz Medical Sciences Journal
Persian site map - English site map - Created in 0.05 seconds with 44 queries by YEKTAWEB 4710