[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Journal Information::
Indexing Sources::
Guide for Authors::
Online Submission::
Articles archive::
For Reviewers::
Contact us::
Basic and Clinical Biochemistry and Nutrition
Search in website

Advanced Search
Receive site information
Enter your Email in the following box to receive the site news and information.
:: Volume 27, Issue 6 (Bimonthly 2023) ::
Feyz 2023, 27(6): 599-609 Back to browse issues page
Impact of nanomagnetic graphene oxide (MGO) drug delivery with gonadotropin on glutathione levels and free radicals in oocytes during in vivo maturation of NMRI mice
Mitra Rahimi fathkouhi , Tahereh Forotan , Maryam Hosseinzadeh Shirzeyli
Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran , mitrarahimi34@yahoo.com
Abstract:   (256 Views)
Background and Aim: In assisted reproductive techniques (ART) to obtain more oocyte, it is important to use nanomaterials based on graphene oxide (GO) and superparamagnetic Fe3O4, which increase the effectiveness of the drug in the appropriate dose. The aim of this study was to investigate the impact of nano-magnetic graphene oxide (MGO) drug delivery with gonadotropin on glutathione levels and free radicals in oocytes during in vivo maturation of NMRI mice.
Methods: In this experimental study, 30 female NMRI mice were divided into 6 groups of 5 each, including a control group receiving PMSG and HCG hormones, a control group without hormones, a PMSG hormone group with nano-MGO, a PMSG and HCG hormone group with nano-MGO, and a nano-MGO group. Ovulation-stimulating hormone (Pregnant Mare Serum Gonadotropin; PMSG) was intraperitoneally injected followed by human chorionic gonadotropin (HCG) after 48 hours. Twelve hours later, the number of metaphase II oocytes retrieved from the left fallopian tubes was counted in each group. Immunocytochemical staining for glutathione (GSH) and reactive oxygen species (ROS) was performed, and ovarian histological examination was conducted.
Results: Simultaneous administration of HCG and PMSG with nano-MGO significantly increased cytoplasmic GSH expression compared to the control hormone group (P<0.01). The group treated with a combination of hormones and MGO showed a significant increase in the number of corpus luteum (P<0.01). The level of ROS in groups treated with nano-MGO and hormone did not differ significantly from the group receiving only hormones.
Conclusion: Nano-MGO may enhance the efficacy of ovulation hormones, improve protein and hormone absorption in ovarian tissue, and with further research, could potentially be utilized in the development of ovulation drugs.
Keywords: Oocyte maturation, Magnetic graphene oxide, Glutathione, ROS
Full-Text [PDF 759 kb]   (80 Downloads)    
Type of Study: Research | Subject: General
Received: 2023/09/20 | Revised: 2024/02/19 | Accepted: 2023/12/31 | Published: 2024/02/13
1. Valsangkar S, Bodhare T, Bele S, Sai S. An evaluation of the effect of infertility on marital, sexual satisfaction indices and health-related quality of life in women. J Hum Reprod Sci. 2011; 4: 80 doi:10.4103/0974-1208.86088 PMid:22065832 PMCid:PMC3205538
2. Newson A, Smajdor A. Artificial gametes: new paths to parenthood J Med Ethics. 2005; 31(3): 184-6. doi:10.1136/jme.2003.004986 PMid:15738444 PMCid:PMC1734101
3. Le Du A, Kadoch IJ, Bourcigaux N, Doumerc S, Bourrier MC, Chevalier N, et al. In vitro oocyte maturation for the treatment of infertility associated with polycystic ovarian syndrome: The French experience. Hum Reprod. 2005; 20: 420 doi:10.1093/humrep/deh603 PMid:15528263
4. Grynberg M, El Hachem H, Bantel AD, Benard J, Parco SI, Fanchin R. In vitro maturation of oocytes: uncommon indications. Fertil Steril. 2013; 99: 118. doi:10.1016/j.fertnstert.2013.01.090PMid:23380185
5. Xu M, Barrett SL, West-Farrell E, Kondapalli LA, Kiesewetter SE, Shea LD, et al. In vitro grown human ovarian follicles from cancer patients support oocyte growth. Hum Reproduct. 2009; 228 doi:10.1093/humrep/dep228 PMid:19597190 PMCid:PMC2743446
6. Chang EM, Song HS, Lee DR, Lee WS, Yoon TK. In vitro maturation of human oocytes: Its role in infertility treatment and new possibilities. Clin Exp Reprod Med. 2014; 2: 41 doi:10.5653/cerm.2014.41.2.41 PMid:25045627 PMCid:PMC4102689
7. Zhao HC, Ding T, Ren Y, Li TJ, Li R, Fan Y, et al. Role of Sirt3 in mitochondrial biogenesis and developmental competence of human in vitro matured oocytes. Hum Reprod. 2016; 31:607 doi:10.1093/humrep/dev345 PMid:26787646
8. Jeon Y, David Yoon J, Cai L, Hwang SU, Kim E, et al. Zinc supplementation during in vitro maturation increases the production efficiency of cloned pigs. Journal of Reproduction and Development 2016; 62: 635. doi:10.1262/jrd.2016-072 PMid:27488694 PMCid:PMC5177983
9. Trounson A, Anderiesz C, Jones G. Maturation of human oocytes in vitro and their developmental competence. Reproduction. 2001; 121(1):51-75. doi:10.1530/rep.0.1210051 PMid:11226029
10. Combelles CMH. In vitro maturation of human oocytes: Current Practices and Future Promises. Human Reproduction: Updates and New Horizons 2016: 45. doi:10.1002/9781118849613.ch2
11. Ali A, Bilodeau J, Sirard M. Antioxidant requirements for bovine oocytes varies during in vitro maturation, fertilization and development. Theriogenology. 2003; 59: 939 doi:10.1016/S0093-691X(02)01125-1 PMid:12517395
12. Pham XH, Hahm E, Kim HM, Son BS, Jo A, An J, et al. Silica-Coated magnetic iron oxide Nanoparticles grafted onto graphene oxide for protein isolation. Nanomaterials. 2020; 10: 117 doi:10.3390/nano10010117 PMid:31936217 PMCid:PMC7022723
13. Roustaei M, Lahouti A, Shami M. Success Rate of Sarem Protocol for Assisted Reproductive Techniques in Patients with Poor Ovarian Response. Sarem J Reproductive Med. 2019; 4(3): 143-8.‎ doi:10.29252/sjrm.4.3.143
14. Pompella A, Visvikis A, Paolicchi A, De Tata V, Casini AF. The changing faces of glutathione, a cellular protagonist. Biochem Pharmacol. 2003; 66(8): 1499-503. doi:10.1016/S0006-2952(03)00504-5 PMid:14555227
15. Lian HY, Gao Y, Jiao GZ, Sun MJ, Wu XF, Wang TY, Li H, et al. Antioxidant supplementation overcomes the deleterious effects of maternal restraint stress-induced oxidative stress on mouse oocytes. Reproduction. 2013; 146(6): 559-68 doi:10.1530/REP-13-0268 PMid:24043846
16. Marthandan S, Murphy MP, Billett E, Barnett Y. An investigation of the effects of MitoQ on human peripheral mononuclear cells. Free Radic Res. 2011; 45(3): 351-8 doi:10.3109/10715762.2010.532497 PMid:21047171
17. Grier HJ, Neidig CL, Grassiotto QI. Development and fate of the postovulatory follicle complex, postovulatory follicle, and observations on folliculogenesis and oocyte atresia in ovulated common snook, Centropomus undecimalis J Morphol. 2017; 278: 547 doi:10.1002/jmor.20652 PMid:28261870
18. Coticchio G, Dal Canto M, Renzini MM, Guglielmo MC, Brambillasca F, Turchi D, et al. Oocyte maturation: gamete-somatic cells interactions, meiotic resumption, cytoskeletal dynamics and cytoplasmic reorganization. Hum Reprod Update. 2015; 21(4): 427 doi:10.1093/humupd/dmv011 PMid:25744083
19. Rocha-Frigoni NA, Leão BC, Dall'Acqua PC, Mingoti GZ. Improving the cytoplasmic maturation of bovine oocytes matured in vitro with intracellular and/or extracellular antioxidants is not associated with increased rates of embryo development. Theriogenology. 2016; 86: 1897 doi:10.1016/j.theriogenology.2016.06.009 PMid:27474235
20. Kim KJ, Chun JL, Lee KB, Lee JI, Sun Park K, Woo Han K, et al. Effect of acteoside on the re-localization and abnormal morphology of mitochondria in porcine oocytes during in vitro maturation. J Assisted Reprod Genetics. 2016; 1. doi:10.1007/s10815-016-0729-x PMid:27189054 PMCid:PMC4930786
21. Foroutan T, Ahmady F, Moayer F, Khalvati. Effects of intraperitoneal injection of magnetic graphene oxide on the improvement of acute liver injury induced by CCl4. Biomater Res. 2020; 24: 14. doi:10.1186/s40824-020-00192-5 PMid:32864158 PMCid:PMC7449094
22. Foroutan T, Nazemi N, Kassaee MZ, Tavana M, Sonei Shargh S, Zareh zardini H. Suspended graphene oxide nanoparticle for accelerated multilayer osteoblast attachment. J Biomed Mater Res Part A. 2018; 106:293 doi:10.1002/jbm.a.36231 PMid:28891194
23. Foroutan T, Kassaee MZ, Salari M, Ahmady F, Molavi F, Moayer F. Magnetic Fe3O4@graphene oxide improves the therapeutic effects of embryonic stem cells on acute liver damage. Cell Prolif. 2021; 54(11): e13126 doi:10.1111/cpr.13126 PMid:34569673 PMCid:PMC8560617
24. Brad AM, Bormann CL, Swain JE, Durkin RE, Johnson AE, Clifford AL, Krisher RL. Glutathione and adenosine triphosphate content of in vivo and in vitro matured porcine oocytes. Mol Reprod Dev. 2003; 64(4): 492-8 doi:10.1002/mrd.10254 PMid:12589661
25. Holmannova D, Borsky P, Svadlakova T, Borska L, Fiala Z. Reproductive and Developmental Nanotoxicity of Carbon Nanoparticles. Nanoparticles. Nanomaterials. 2022; 12 doi:10.3390/nano12101716 PMid:35630937 PMCid:PMC9144754
26. Batiuskaite D, Grinceviciute N, Snitka V. Impact of graphene oxide on viability of Chinese hamster ovary and mouse hepatoma MH-22A cells. Toxicol Vitr. 2015; 29: 1195-200 doi:10.1016/j.tiv.2015.05.004 PMid:25982263
27. Asghar W, Shafiee H, Velasco V, Sah VR, Guo S, El Assal R, et al. Toxicology Study of Single-walled Carbon Nanotubes and Reduced Graphene Oxide in Human Sperm. Sci Rep. 2016; 6: 30270 doi:10.1038/srep30270 PMid:27538480 PMCid:PMC4990966
28. Mrdanovi J, Šolaji S, Bogdanovi V, Stankov K, Bogdanovi G, Djordjevic A. Effects of fullerenol C60(OH)24 on the frequency of micronuclei and chromosome aberrations in CHO-K1 cells. Mutat. Res.Genet. Toxicol Environ Mutagen. 2009; 680; 25-30. doi:10.1016/j.mrgentox.2009.08.008 PMid:19733687
29. Bernabò N, Fontana A, Sanchez MR, Valbonetti L, Capacchietti G, Zappacosta R, et al. Graphene oxide affects in vitro fertilization outcome by interacting with sperm membrane in an animal model. Carbon. 2018; 129: 428-37 doi:10.1016/j.carbon.2017.12.042
30. Aminzadeh Z, Jamalan M, Chupani L, Lenjannezhadian H, Ghaffari MA, Aberomand M, et al. In vitro reprotoxicity of carboxyl-functionalised single- and multi-walled carbon nanotubes on human spermatozoa. Andrologia. 2017; 49, e12741 doi:10.1111/and.12741 PMid:28000929
31. Zhao Y, Wu Q, Wang D. An epigenetic signal encoded protection mechanism is activated by graphene oxide to inhibit its induced reproductive toxicity in Caenorhabditis elegans. Biomaterials. 2016; 79: 15-24 doi:10.1016/j.biomaterials.2015.11.052 PMid: 26686978
32. Kong C, Aziz AI, Kakarla AB, Kong I, KongW. Toxicity evaluation of graphene and poly (Lactic-acid) using a nematode model. Solid State Phenom. 2019; 290: 101-6 doi:10.4028/www.scientific.net/SSP.290.101
33. Yang, XY, Wang Y, Huang X, Ma Y, Huang Y, Yang R, Duan H, et al. Multi-functionalized graphene oxide based anticancer drug-carrier with dual-targeting function and pH-sensitivity. J Mater Chem. 2011; 21: 3448-54 doi:10.1039/C0JM02494E
34. Jermy BR, Ravinayagam V, Alamoudi WA, Almohazey D, Dafalla H, Hussain L, et al. Targeted therapeutic effect against the breast cancer cell line MCF-7 with a CuFe2O4/silica/cispl nanocomposit formation. Beilstein J Nanotech. 2019; 10: 2217-8 doi:10.3762/bjnano.10.214 PMid:31807407 PMCid:PMC6880833
35. Guo L, Shi H, Wu H, Zhang Y, Wang X, Wu D, An L, et al. Prostate cancer targeted multifunctionalized graphene oxide for magnetic resonance imaging and drug delivery. Carbon. 2016; 107. doi:10.1016/j.carbon.2016.05.054
36. Kuan WC, Lai JW, Lee WC. Covalent binding of glutathione on magnetic nanoparticles: Application for immobilizing small fragment ubiquitin-like-specific protease1. Enzyme Microb Technol. 2021; 143:109697. doi:10.1016/j.enzmictec.2020.109697 PMid:33375983
37. Chen X, Hai X, Wang J. Graphene/graphene oxide and their derivatives in the separation/isolation and preconcentration of protein species: A review. Analytica Chimica Acta. 2016; 922, 1-10 doi:10.1016/j.aca.2016.03.050 PMid:27154826
38. Gonzalez-Rodriguez R, Campbell E, Naumov A. Multifunctional graphene oxide/iron oxide nanoparticles for magnetic targeted drug delivery dual magnetic resonance/fluorescence imaging and cancer sensing. PLoS One. 2019; 14(6): 0217072 doi:10.1371/journal.pone.0217072 PMid:31170197 PMCid:PMC6553710
39. Amaro-Gahete J, Benítez A, Otero R, Esquivel D, Jiménez-Sanchidrián C, Morales J, et al. A comparative study of particle size distribution of graphene nanosheets synthesized by an ultrasound-assisted method. Nanomat. 2019; 9 doi:10.3390/nano9020152 PMid:30691102 PMCid:PMC6409618
40. Dahari RN, Heinemann-Yerushalmi L, Hadas R, Kalich-Philosoph L, Ketter D, Nevo N, et al. Galiani D, et al. Vasorin: a newly identified regulator of ovarian folliculogenesis. FASEB J. 2018; 32: 2124 doi:10.1096/fj.201700057RRR PMid:29259033
41. Leoni GG, Grazia Palmerini M, Satta V, Succu S, Pasciu V, Zinellu A, et al. Differences in the kinetic of the first meiotic division and in active mitochondrial distribution between prepubertal and adult oocytes mirror differences in their developmental competence in a sheep model. PLoS One. 2015; 10(4): 24911 doi:10.1371/journal.pone.0124911 PMid:25893245 PMCid:PMC4403920
42. Campbell E, Hasan MT, Pho Ch, Callaghan K, Akkaraju GR, Naumova AV. Graphene Oxide as a Multifunctional Platform for Intracellular Delivery, Imaging, and Cancer Sensing. Sci Rep 2019; 9(1): 416. doi:10.1038/s41598-018-36617-4 PMid:30674914 PMCid:PMC6344482
43. Seabra AB, Paula AJ, de Lima R, Alves OL, Durán N. Nanotoxicity of Graphene and Graphene Oxide. Chem Res Toxicol. 2014; 27(2): 159-68. pmid: 24422439 doi:10.1021/tx400385x PMid:24422439
Send email to the article author

Add your comments about this article
Your username or Email:


XML   Persian Abstract   Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Rahimi fathkouhi M, Forotan T, Hosseinzadeh Shirzeyli M. Impact of nanomagnetic graphene oxide (MGO) drug delivery with gonadotropin on glutathione levels and free radicals in oocytes during in vivo maturation of NMRI mice. Feyz 2023; 27 (6) :599-609
URL: http://feyz.kaums.ac.ir/article-1-4989-en.html

Creative Commons License
This open access journal is licensed under a Creative Commons Attribution-NonCommercial ۴.۰ International License. CC BY-NC ۴. Design and publishing by Kashan University of Medical Sciences.
Copyright ۲۰۲۳© Feyz Medical Sciences Journal. All rights reserved.
Volume 27, Issue 6 (Bimonthly 2023) Back to browse issues page
مجله علوم پزشکی فیض Feyz Medical Sciences Journal
Persian site map - English site map - Created in 0.06 seconds with 46 queries by YEKTAWEB 4645