[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Indexing Sources::
Guide for Authors::
Online Submission::
Ethics::
Articles archive::
For Reviewers::
Contact us::
AI::
::
Basic and Clinical Biochemistry and Nutrition
..
DOAJ
..
CINAHL
..
EBSCO
..
IMEMR
..
ISC
..
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
enamad
..
:: Volume 29, Issue 3 (Bimonthly 2025) ::
Feyz Med Sci J 2025, 29(3): 246-256 Back to browse issues page
Effect of eight weeks of high-intensity interval swim training on Leptin and Hepassocin proteins in liver tissue of rats with Non-Alcoholic Steatohepatitis induced by a high-fat diet
Seyed Mohammad Nabi Bahrani , Saleh Rahmati * , Vahid Moghaddam
Department of Physical Education, Pardis Branch, Islamic Azad University, Pardis, Iran & Department of Physical Education, Pardis Branch, Islamic Azad University, Pardis, Iran , Rahmatisalehrahmati@pardisiau.ac.ir
Abstract:   (325 Views)
Background and Aim: With the increasing industrialization of societies and rising physical inactivity, the prevalence of diseases such as non-alcoholic fatty liver disease (NAFLD) is on the rise. Non-alcoholic steatohepatitis (NASH), an advanced stage of NAFLD, is associated with insulin resistance, oxidative stress, and inflammation. High-intensity interval training (HIIT) is considered an effective non-pharmacological intervention for NASH management. However, there is ongoing debate regarding the optimal exercise protocol. This study aimed to evaluate the effects of HIIT swim training on leptin and hepassocin protein levels in the liver tissue of rats with NASH.
Methods: In this experimental study, 40 male Sprague-Dawley rats (age: 8 weeks, weight: 230 ± 20 g) were selected. NASH was induced through a high-fat diet, and the rats were randomly assigned to four groups (n=9 per group): healthy without exercise, healthy with exercise, NASH without exercise, and NASH with exercise. The HIIT swim training protocol (8 weeks, 3 sessions per week on alternate days) consisted of 20 bouts of 30-second swimming intervals with 30-second rest periods between bouts. The training load started at 7% of body weight in the first week, increasing by 1% weekly to reach 14% by the eighth week. Leptin and hepassocin (HPS) protein levels in liver tissue were measured using Western blotting.
Results: Leptin protein levels were significantly higher in the healthy-exercise group compared to the NASH-without-exercise group (P=0.031, mean difference=0.441). Hepassocin protein levels were significantly elevated in the NASH-without-exercise group compared to both the healthy-without-exercise group (P=0.013, mean difference=0.556) and the healthy-exercise group (P=0.01, mean difference=0.575).
Conclusion: Despite the continuation of a high-fat diet, HIIT swim training demonstrated positive effects on molecular markers associated with NASH. However, further research is needed to establish definitive conclusions.
Keywords: Non-Alcoholic Steatohepatitis, Leptin, Hepassocin, High-Intensity Interval Training
     
Type of Study: Research | Subject: General
Received: 2024/12/5 | Revised: 2025/08/17 | Accepted: 2025/07/7 | Published: 2025/08/17
References
1. Ando Y, Jou JH. Nonalcoholic fatty liver disease and recent guideline updates. Clin Liver Dis. 2021; 17(1): 23. doi:10.1002/cld.1045 PMid:33552482 PMCid:PMC7849298
2. Zeng F, Zhang Y, Han X, Zeng M, Gao Y, Weng J. Predicting non-alcoholic fatty liver disease progression and immune deregulations by specific gene expression patterns. Front Immunol. 2021; 11: 609900. doi:10.3389/fimmu.2020.609900
3. Tsai IT, Hung WC, Lu YC, Wu CC, Lee TL, Hsuan CF, et al. Circulating hepassocin level in patients with stable angina is associated with fatty liver and renal function. Int J Med Sci. 2021; 18(1):1. doi:10.7150/ijms.50646 PMid:33390768, PMCid:PMC7738965
4. Yang Y, Zhai H, Wan Y, Wang X, Chen H, Dong L, et al. Recombinant human HPS protects mice and nonhuman primates from acute liver injury. Int J Mol Sci. 2021; 22(23):12886. doi:10.3390/ijms222312886 PMid:34884691 PMCid:PMC8657617
5. Kim JA, Choi KM. Sarcopenia and fatty liver disease. Hepatol Int. 2019; 13(6):674-87. doi:10.1007/s12072-019-09996-7 PMid:31705444
6. Jung TW, Chung YH, Kim HC, Abd El-Aty A, Jeong JH. Hyperlipidemia-induced hepassocin in the liver contributes to insulin resistance in skeletal muscle. Mol Cell Endocrinol. 2018; 470: 26-33. doi:10.1016/j.mce.2017.10.014 PMid:29111387
7. Wu HT, Lu FH, Ou HY, Su YC, Hung HC, Wu JS, et al. The role of hepassocin in the development of non-alcoholic fatty liver disease. J Hepatol. 2013; 59(5):1065-72. doi:10.1016/j.jhep.2013.06.004 PMid:23792031
8. Ou HY, Wu HT, Lin CH, Du YF, Hu CY, Hung HC, et al. The hepatic protection effects of hepassocin in hyperglycemic crisis. J Clin Endocrinol Metab. 2017; 102(7): 2407-15. doi:10.1210/jc.2016-3287 PMid:28402540
9. Wu HT, Ou HY, Hung HC, Su YC, Lu FH, Wu JS, et al. A novel hepatokine, HFREP1, plays a crucial role in the development of insulin resistance and type 2 diabetes. Diabetologia. 2016;59:1732-42. doi:10.1007/s00125-016-3991-7 PMid:27221093
10. Stefan N, Schick F, Birkenfeld AL, Häring HU, White MF. The role of hepatokines in NAFLD. Cell Metab. 2023; 35(2): 236-52. doi:10.1016/j.cmet.2023.01.006 PMCid:PMC10157895
11. Boutari C, Mantzoros CS. Adiponectin and leptin in the diagnosis and therapy of NAFLD. Metabolism. 2020; 103. doi:10.1016/j.metabol.2019.154028 PMid:31785257
12. İlhan A, Kayrın L. The Impact of Leptin on Nutrition and Dietetics. Int J Med Invest. 2024; 13(3): 24-33.
13. Casado ME, Collado-Pérez R, Frago LM, Barrios V. Recent advances in the knowledge of the mechanisms of leptin physiology and actions in neurological and metabolic pathologies. Int J Mol Sci. 2023; 24(2):1422. doi: 10.3390/ijms24021422 PMid:36674935
14. Polyzos SA, Aronis KN, Kountouras J, Raptis DD, Vasiloglou MF, Mantzoros CS. Circulating leptin in non-alcoholic fatty liver disease: a systematic review and meta-analysis. Diabetologia. 2016; 59(1): 30-43. doi:10.1007/s00125-015-3769-3
15. Polyzos SA, Kountouras J, Zavos C, Deretzi G. The potential adverse role of leptin resistance in nonalcoholic fatty liver disease: a hypothesis based on critical review of the literature. J Clin Gastroenterol. 2011; 45(1):50-4. doi:10.1097/MCG.0b013e3181ec5c66 PMid:20717042
16. Imajo K, Fujita K, Yoneda M, Nozaki Y, Ogawa Y, Shinohara Y, et al. Hyperresponsivity to low-dose endotoxin during progression to nonalcoholic steatohepatitis is regulated by leptin-mediated signaling. Cell Metab. 2012; 16(1):44-54. doi:10.1016/j.cmet.2012.05.012 PMid:22768838
17. Silva GMd, Sandes MdO, Vasconcelos-Filho FSL, Rocha DS, Rocha-e-Silva RCd, Silva CAd, et al. Responses of plasma adipokines to high intensity interval training: systematic review. Rev Bras Med Esporte. 2020; 26: 262-6. doi:10.1590/1517-869220202603213840
18. Kia B. The effect of primary swimming on the hormonal anabolic-catabolic balance and serum leptin in obese children and adolescents. J Exerc Organ Cross Talk. 2021; 1(2):93-9.
19. Acar H. The effect of different term swimming exercise in rats on serum leptin levels. 2020.
20. Nayebifar S, Nakhaei H, Kakhki ZB, Ghasemi E. Intermittent vs. continuous swimming training on adipokines and pro-inflammatory cytokines in metabolic syndrome experimental model. Horm Mol Biol Clin Investig. 2023; 44(3):321-8. doi:10.1515/hmbci-2022-0004 PMid:37587008
21. Faíl LB, Marinho DA, Marques EA, Costa MJ, Santos CC, Marques MC, et al. Benefits of aquatic exercise in adults with and without chronic disease-A systematic review with meta‐analysis. Scand J Med Sci Sports. 2022; 32(3):465-86. doi:10.1111/sms.14112 PMid:34913530
22. Eimonte M, Paulauskas H, Daniuseviciute L, Eimantas N, Vitkauskiene A, Dauksaite G, et al. Residual effects of short-term whole-body cold-water immersion on the cytokine profile, white blood cell count, and blood markers of stress. Int J Hyperthermia. 2021; 38(1): 696-707. doi:10.1080/02656736.2021.1915504 PMid:33910456
23. Zou Y, Li J, Lu C, Wang J, Ge J, Huang Y, et al. High-fat emulsion-induced rat model of nonalcoholic steatohepatitis. Life Sci. 2006; 79(11):1100-7. doi:10.1016/j.lfs.2006.03.021 PMid:16624332
24. Chen B, Ma Y, Xue X, Wei J, Hu G, Lin Y. Tetramethylpyrazine reduces inflammation in the livers of mice fed a high fat diet. Mol Med Rep. 2019; 19(4):2561-8. doi:10.3892/mmr.2019.9928
25. Kleiner DE, Brunt EM, Van Natta M, Behling C, Contos MJ, Cummings OW, et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology. 2005; 41(6):1313-21. doi:10.1002/hep.20701 PMid:15915461
26. Farzanegi P, habibian m, alinejad h. The Combined Effect of Regular Aerobic Exercise with Garlic Extract on Renal Apoptosis Regulatory Factors in Aged rats with Chronic Kidney Disease. J Arak Univ Med Sci. 2016; 19(3): 62-70.
27. Ramos-Filho D, Chicaybam G, de-Souza-Ferreira E, Guerra Martinez C, Kurtenbach E, Casimiro-Lopes G, et al. High intensity interval training (HIIT) induces specific changes in respiration and electron leakage in the mitochondria of different rat skeletal muscles. PLoS One. 2015; 10(6):e0131766. doi:10.1371/journal.pone.0131766 PMid:26121248 PMCid:PMC4488295
28. Jowhari A, Daryanoosh F, Jahromi MK, Nekooeian AA. Effect of High-intensity Intermittent Swimming Training on peroxisome proliferator-activated receptors-αand Liver Enzymes in Non-alcoholic Steatohepatitis Male Rats. J Shahid Sadoughi Univ Med Sci. 2022. doi:10.18502/ssu.v30i10.11454
29. Zhang Y, Wan C, Song Z, Meng W, Wang S, Lan Z. Pectolinarigenin reduces the expression of sterol regulatory element-binding proteins and cellular lipid levels. Biosci Biotechnol Biochem. 2022; 86(9): 1220-30. doi:10.1093/bbb/zbac095 PMid:35723236
30. Chiu CF, Hsu MI, Yeh HY, Park JM, Shen YS, Tung TH, et al. Eicosapentaenoic acid inhibits KRAS mutant pancreatic cancer cell growth by suppressing hepassocin expression and STAT3 phosphorylation. Biomolecules. 2021; 11(3):370. doi:10.3390/biom11030370 PMid:33801246
31. Azzu V, Vacca M, Virtue S, Allison M, Vidal-Puig A. Adipose tissue-liver cross talk in the control of whole-body metabolism: implications in nonalcoholic fatty liver disease. Gastroenterology. 2020; 158(7): 1899-912. doi:10.1053/j.gastro.2019.12.054 PMid:32061598
32. Svegliati-Baroni G, Pierantonelli I, Torquato P, Marinelli R, Ferreri C, Chatgilialoglu C, et al. Lipidomic biomarkers and mechanisms of lipotoxicity in non-alcoholic fatty liver disease. Free Radic Biol Med. 2019; 144: 293-309. doi:10.1016/j.freeradbiomed.2019.05.029 PMid:31152791
33. Geng Y, Faber KN, de Meijer VE, Blokzijl H, Moshage H. How does hepatic lipid accumulation lead to lipotoxicity in non-alcoholic fatty liver disease? Hepatol Int. 2021; 15: 21-35. doi:10.1007/s12072-020-10121-2 PMid:33548031 PMCid:PMC7886759
34. Pafili K, Roden M. Nonalcoholic fatty liver disease (NAFLD) from pathogenesis to treatment concepts in humans. Mol Metab. 2021; 50:101122. doi:10.1016/j.molmet.2020.101122 PMid:33220492 PMCid:PMC8324683
35. Yu N, Ruan Y, Gao X, Sun J. Systematic review and meta-analysis of randomized, controlled trials on the effect of exercise on serum leptin and adiponectin in overweight and obese individuals. Horm Metab Res. 2017; 49(03): 164-73. doi: 10.1055/s-0042-121605 PMid:28249299
36. Sirico F, Bianco A, D'Alicandro G, Castaldo C, Montagnani S, Spera R, et al. Effects of Physical Exercise on Adiponectin, Leptin, and Inflammatory Markers in Childhood Obesity: Systematic Review and Meta-Analysis. Child Obes. 2018; 14(4):207-17. doi:10.1089/chi.2017.0269 PMid:29762052 PMCid:PMC5994661
37. Martínez-Uña M, López-Mancheño Y, Diéguez C, Fernández-Rojo MA, Novelle MG. Unraveling the role of leptin in liver function and its relationship with liver diseases. Int J Mol Sci. 2020;21(24):9368. doi:10.3390/ijms21249368 PMid:33316927 PMCid:PMC7764544
38. de Assis GG, Murawska-Ciałowicz E. Exercise and weight management: the role of leptin-a systematic review and update of clinical data from 2000-2022. J Clin Med. 2023; 12(13):4490. doi:10.3390/jcm12134490 PMid:37445524 PMCid:PMC10342435
39. Bird L. Exercise lowers leptin and leukocytosis. Nat Rev Immunol. 2020;20(1):2-3. doi:10.1038/s41577-020-00485-9
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Bahrani S M N, Rahmati S, Moghaddam V. Effect of eight weeks of high-intensity interval swim training on Leptin and Hepassocin proteins in liver tissue of rats with Non-Alcoholic Steatohepatitis induced by a high-fat diet. Feyz Med Sci J 2025; 29 (3) :246-256
URL: http://feyz.kaums.ac.ir/article-1-5274-en.html


Creative Commons License
This open access journal is licensed under a Creative Commons Attribution-NonCommercial ۴.۰ International License. CC BY-NC ۴. Design and publishing by Kashan University of Medical Sciences.
Copyright ۲۰۲۳© Feyz Medical Sciences Journal. All rights reserved.
Volume 29, Issue 3 (Bimonthly 2025) Back to browse issues page
مجله علوم پزشکی فیض Feyz Medical Sciences Journal
Persian site map - English site map - Created in 0.68 seconds with 46 queries by YEKTAWEB 4714