[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Journal Information::
Indexing Sources::
Guide for Authors::
Online Submission::
Articles archive::
For Reviewers::
Contact us::
Basic and Clinical Biochemistry and Nutrition
Search in website

Advanced Search
Receive site information
Enter your Email in the following box to receive the site news and information.
:: Volume 23, Issue 6 (Bimonthly 2019) ::
Feyz 2019, 23(6): 588-595 Back to browse issues page
Effect of zinc oxide nanoparticles synthesized by aqueous extract of hyssopus officinalis on colon cancer cell line (HT-29) and normal cell line (Huvec), and also on proxytonin protein (PCT) in Invivo environment
Ghasem Rahimi-Kalateh-Shah-Mohammad , Masoud Homayouni-Tabrizi , Turan Ardalan , Bahare Hormozi
Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, I. R. Iran. , mhomayouni6@gmail.com
Abstract:   (2907 Views)
Background: Today, with the increasing rates of cancer, especially colon cancer, and due to the side effects of chemical drugs in the treatment of these diseases, more attention to safe drugs with less side effects is needed. This study aimed to evaluate the toxicity of nanoparticles of zinc oxide synthesized by green hyssop plant extracts method, on colon cancer cell line (HT29) and examined the effects of nanoparticles on calcitonin proxy blood protein
Materials and Methods: In this in vitro study, the MTT method was used to evaluate the toxicity of this nanoparticle at four concentrations (250, 125, 62.5, 31.2 μg/ml) against normal cells and colon cancer cells. In the in vivo environment, 20 adult male mice were randomly assigned into 3 experimental groups (n=5), 100, 200, 300 mg/kg of 20 nm oxide nanoparticles, orally, and the control group (without receiving nanoparticles). Finally, the mice were anesthetized by an ether and an autopsy and blood samples from the heart was taken to carry out the proxitonin protein test by a solvent cannula in the clinical laboratory.
Results: These nanoparticles are capable of inhibiting cancer cells at low concentrations (62.5, 31.2 μg/ml) and IC50 is reported to be about 62.5 μg/ml (P<0.0001). The results of the PCT test as a result of treatment of mice showed a slight increase in proxytonin protein at a concentration of 300 mg/kg (P<0.0001).
Conclusion: By increasing the concentration of zinc oxide nanoparticles synthesized by the green method from the aqueous extract of the hyssop plant, its toxicity increases and causes a rise in the proxytonin protein in the blood.
Keywords: Zinc oxide nanoparticles, hyssopus aqueous extract, HT-2 cell line and peripheral environment, Proxytonine protein
Full-Text [PDF 315 kb]   (1386 Downloads)    
Type of Study: Research | Subject: General
Received: 2019/02/1 | Revised: 2020/02/17 | Accepted: 2019/08/19 | Published: 2020/02/12
1. Hassan H, Mansour A, Abo‐Youssef A, Elsadek B, Messiha B. Zinc oxide nanoparticles as a novel anticancer approach; in vitro and in vivo evidence. Clin Exp Pharmacol Physiol 2017; 44(2): 235-43.
2. Xu D, Liu M, Zou H, Tian J, Huang H, Wan Q, et al. A new strategy for fabrication of water dispersible and biodegradable fluorescent organic nanoparticles with AIE and ESIPT characteristics and their utilization for bioimaging. Talanta 2017; 174: 803-8.
3. Khazaie H, Nadjafi F, Bannayan M. Effect of irrigation frequency and planting density on herbage biomass and oil production of thyme (Thymus vulgaris) and hyssop (Hyssopus officinalis). Ind Crops Prod 2008; 27(3): 315-21.
4. Mazzanti G, Battinelli L, Salvatore G. Antimicrobial properties of the linalol‐rich essential oil of Hyssopus officinalis L. var decumbens (Lamiaceae). Flavour Frag J 1998; 13(5): 289-94.
5. Letessier M, Svoboda K, Walters D. Antifungal activity of the essential oil of hyssop (Hyssopus officinalis). J Phytopathol 2001; 149(11): 673-8.
6. Weidner N, Folkman J, Pozza F, Bevilacqua P, Allred EN, Moore DH, et al. Tumor angiogenesis: a new significant and independent prognostic indicator in early-stage breast carcinoma. Natl Cancer Inst 1992; 84(24): 1875-87.
7. De Jong W, Borm P. Drug delivery and nanoparticles: applications and hazards. Int J Nanomed 2008; 3(2): 133-40.
8. Safari Chaleshtori J, Moradi MT, Farokhi E, Tabatabaee Far MA, Ghahfarrokhi T, Shayesteh F, et al. Detection of mutations in exons 5-8 of the P53 gene in gastric cancer samples using PCR-SSCP in Chaharmahal va Bakhtiari province 2006. J Shahrekord Univ Med Sci 2009; 174: 803-8. [in Persian]
9. Sharma V, Singh P, Pandey AK, Dhawan A. Induction of oxidative stress, DNA damage and apoptosis in mouse liver after sub-acute oral exposure to zinc oxide nanoparticles. Mutat Res-Gen Tox En 2012; 7(1): 84-91.
10. Belkhaoui C, Lefi R, Mzabi N, Smaoui H. Synthesis, optical and electrical properties of Mn doped ZnO nanoparticles. J Mater Sci-Mater El Materials in Electronics. 2018; 29(8):7020-31.
11. Wojnarowicz J, Omelchenko M, Szczytko J, Chudoba T, Gierlotka S, Majhofer A, et al. Structural and Magnetic Properties of CoMn Codoped ZnO Nanoparticles Obtained by Microwave Solvothermal Synthesis. Crystals 2018; 8(11): 410-5.
12. Vigneshwaran N, Kumar S, Kathe A, Varadarajan P, Prasad V. Functional finishing of cotton fabrics using zinc oxide–soluble starch nanocomposites. Nanotechnology 2006; 17(20): 5087-92.
13. Yadav A, Prasad V, Kathe A, Raj S, Yadav D, Sundaramoorthy C, et al. Functional finishing in cotton fabrics using zinc oxide nanoparticles. Bull Mater Sci 2006; 29(6): 641-5.
14. Ziegler EJ, Fisher Jr CJ, Sprung CL, Straube RC, Sadoff JC, Foulke GE, et al. Treatment of gram-negative bacteremia and septic shock with HA-1A human monoclonal antibody against endotoxin: a randomized, double-blind, placebo-controlled trial. N Engl J Med 1991; 324(7): 429-36.
15. Levy MM, Fink MP, Marshall JC, Abraham E, Angus D, Cook D, et al. 2001 sccm/esicm/accp/ats/sis international sepsis definitions conference. Intens Care Med 2003; 29(4): 530-8.
16. Went PT, Lugli A, Meier S, Bundi M, Mirlacher M, Sauter G, et al. Frequent EpCam protein expression in human carcinomas. Hum Patholog 2004; 35(1): 122-8.
17. Tersmette M, Gruters R, De Wolf F, De Goede R, Lange J, Schellekens PT, et al. Evidence for a role of virulent human immunodeficiency virus (HIV) variants in the pathogenesis of acquired immunodeficiency syndrome: studies on sequential HIV isolates. J Virology 1989; 63(5): 2118-25.
18. Kharissova OV, Dias HR, Kharisov BI, Pérez BO, Pérez VMJ. The greener synthesis of nanoparticles. Trends Biotechnol 2013; 31(4): 240-48.
19. Unwin P, Unwin T. ICT4D: Information and communication technology for development. Cambridge University Press; 2009. 386.
20. Caws M, Thwaites G, Dunstan S, Hawn TR, Lan NTN, Thuong NTT, et al. The influence of host and bacterial genotype on the development of disseminated disease with Mycobacterium tuberculosis. PLoS Pathogens 2008; 4(3): e1000034.
21. Franceschi S, Herrero R, Clifford GM, Snijders PJ, Arslan A, Anh PTH, et al. Variations in the age‐specific curves of human papillomavirus prevalence in women worldwide. Int J Cancer 2006; 119 (11): 2677-84.
22. Tai PT, Yu E, Winquist E, Hammond A, Stitt L, Tonita J, et al. Chemotherapy in neuroendocrine/Merkel cell carcinoma of the skin: case series and review of 204 cases. J Clin Oncol 2000; 18(12): 2493-9.
23. Clarke M, Lee P, Arora A, Villar R. Levels of metal ions after small-and large-diameter metal-on-metal hip arthroplasty. J Bone Joint Surg Br 2003; 85(6): 913-7.
24. Reinhart K, Bauer M, Riedemann NC, Hartog CS. New approaches to sepsis: molecular diagnostics and biomarkers. Clin Microbiol Rev 2012; 25(4): 609-704.
25. Orlova MA, Osipova EY, Roumiantsev SA. Effect of 67Zn-nanoparticles on leukemic cells and normal lymphocytes. Brit J Med 2012; 2(1): 21-7.
26. Veerman A, Pieters R. Drug sensitivity assays in leukaemia and lymphoma. Brit J Haematol 1990;74(4): 381-4.
27. Albrecht MA, Evans CW, Raston CL. Green chemistry and the health implications of nanoparticles. Green Chem 2006; 8(5): 417-32.
28. Ambika S, Sundrarajan M. Antibacterial behaviour of Vitex negundo extract assisted ZnO nanoparticles against pathogenic bacteria. J Photochem Photobiol B 2015; 146: 52-7.
29. Mahdavirad M, Najafzadeh N, Ali Niapour A, Jafari A. Cytotoxicity of Zno and Ag/Zno nano-composites on malignant melanoma cell line (A375). Arak Med Univ J 2014; 17(6): 74-83.
30. De Berardis B, Civitelli G, Condello M, Lista P, Pozzi R, Arancia G, et al. Exposure to ZnO nanoparticles induces oxidative stress and cytotoxicity in human colon carcinoma cells. Toxicol App Pharmacol 2010; 246(3): 116-27.
31. Li J, Guo D, Wang X, Wang H, Jiang H, Chen B. The photodynamic effect of different size ZnO nanoparticles on cancer cell proliferation in vitro. Nanoscale Res Lett 2010; 5(6): 1063-70.
32. Premanathan M, Karthikeyan K, Jeyasubramanian K, Manivannan G. Selective toxicity of ZnO nanoparticles toward Gram-positive bacteria and cancer cells by apoptosis through lipid peroxidation. Nanomed Nanotechnol 2011; 7(2): 184-92.
33. Das D, Nath B, Phukon P, Dolui S. Synthesis of ZnO nanoparticles and evaluation of antioxidant and cytotoxic activity. Colloids Surf B: Biointerfaces 2013; 111: 556-60.
34. Li LZ, Zhou D-M, Peijnenburg WJ, van Gestel CA, Jin SY, Wang YJ, et al. Toxicity of zinc oxide nanoparticles in the earthworm, Eisenia fetida and subcellular fractionation of Zn. Environ Int 2011; 37(6): 1098-104.
35. Umar H, Kavaz D, Rizaner N. Biosynthesis of zinc oxide nanoparticles using Albizia lebbeck stem bark, and evaluation of its antimicrobial, antioxidant, and cytotoxic activities on human breast cancer cell lines. Int J Nanomed 2019; 14: 87-92.
36. Lasagna-Reeves C, Gonzalez-Romero D, Barria M, Olmedo I, Clos A, Ramanujam VS, et al. Bioaccumulation and toxicity of gold nanoparticles after repeated administration in mice. Biochem Biophys Res Commun 2010; 393(4): 649-55.
37. Claeys R, Vinken S, Spapen H, ver Elst K, Decochez K, Huyghens L, et al. Plasma procalcitonin and C-reactive protein in acute septic shock: clinical and biological correlates. Crit Care Med 2002; 30(4): 757-62.
38. Son SW, Jeong SH. Nanomaterial-induced cytotoxicity detection composition and kit, and nanomaterial-induced cytotoxicity detection method. Google Patents 2015.
39. Grissa I, Elghoul J, Ezzi L, Chakroun S, Kerkeni E, Hassine M, et al. Anemia and genotoxicity induced by sub-chronic intragastric treatment of rats with titanium dioxide nanoparticles. Mutat Res-Gen Tox En 2015; 794: 25-31.
40. Kim Y, Park J, Lee E, Park S, Seong N, Kim J, et al. Toxicity of 100 nm zinc oxide nanoparticles: a report of 90-day repeated oral administration in Sprague Dawley rats. Int J Nanomed 2014; 9(2): 109-14.
41. McNeil SE. Nanotechnology for the biologist. J Leukocyte Biol 2005; 78(3): 585-94.
Send email to the article author

Add your comments about this article
Your username or Email:


XML   Persian Abstract   Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Rahimi-Kalateh-Shah-Mohammad G, Homayouni-Tabrizi M, Ardalan T, Hormozi B. Effect of zinc oxide nanoparticles synthesized by aqueous extract of hyssopus officinalis on colon cancer cell line (HT-29) and normal cell line (Huvec), and also on proxytonin protein (PCT) in Invivo environment. Feyz 2019; 23 (6) :588-595
URL: http://feyz.kaums.ac.ir/article-1-3807-en.html

Creative Commons License
This open access journal is licensed under a Creative Commons Attribution-NonCommercial ۴.۰ International License. CC BY-NC ۴. Design and publishing by Kashan University of Medical Sciences.
Copyright ۲۰۲۳© Feyz Medical Sciences Journal. All rights reserved.
Volume 23, Issue 6 (Bimonthly 2019) Back to browse issues page
مجله علوم پزشکی فیض Feyz Medical Sciences Journal
Persian site map - English site map - Created in 0.05 seconds with 45 queries by YEKTAWEB 4645