[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Indexing Sources::
Guide for Authors::
Online Submission::
Ethics::
Articles archive::
For Reviewers::
Contact us::
AI::
::
Basic and Clinical Biochemistry and Nutrition
..
DOAJ
..
CINAHL
..
EBSCO
..
IMEMR
..
ISC
..
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
enamad
..
:: Volume 29, Issue 4 (Bimonthly 2025) ::
Feyz Med Sci J 2025, 29(4): 397-410 Back to browse issues page
The effect of virtual reality–based rehabilitation on balance, pain, and motor function in athletes with chronic ankle instability: A systematic review
Hossien Ashoury * , Parisa Bahrami
Department of Physical Education and Sports Sciences, Payame Noor University, Tehran, Iran & Department of Physical Education and Sports Sciences, Payame Noor University, Tehran, Iran , hoosienashoury@yahoo.com
Abstract:   (323 Views)
Background and Aim: Chronic ankle instability (CAI) is a common condition resulting from recurrent sprains and impaired motor control, often associated with reduced functional performance, persistent pain, and a high risk of reinjury. Given the sometimes-inconsistent outcomes of conventional rehabilitation methods, innovative technologies such as virtual reality (VR) have emerged as potential complementary or alternative interventions. This systematic review aimed to evaluate the effectiveness of VR-based rehabilitation exercises in improving balance, pain, and functional outcomes in athletes with CAI.
Methods: A systematic search was conducted in PubMed, Cochrane Library, and Scopus databases from January 2016 to June 2024. Eligible studies included randomized controlled trials (RCTs) and observational studies that assessed the effects of VR interventions on pain, balance, and motor function in athletes with CAI. Screening and study selection were independently performed by two reviewers according to a preregistered protocol (CRD420251133199). Methodological quality of the included studies was also assessed.
Results: Of the 598 initially retrieved records, 8 studies met the eligibility criteria (after excluding 138 duplicates, 132 irrelevant studies, and 97 not meeting inclusion criteria). Qualitative synthesis indicated that VR-based rehabilitation interventions resulted in significant improvements in pain management, motor performance, and balance. Effective protocols typically consisted of 30–60 minute sessions conducted 2–3 times per week.
Conclusion: The findings of this systematic review suggest that VR-based rehabilitation can be an effective intervention for reducing pain and improving balance and motor function in athletes with chronic ankle instability. Incorporating VR-based training into comprehensive rehabilitation programs for this population is recommended.
Keywords: Chronic ankle instability, Virtual reality, Rehabilitation, Balance, Pain, Systematic review, Motor function
Full-Text [PDF 459 kb]   (89 Downloads)    
Type of Study: Review | Subject: General
Received: 2025/07/17 | Revised: 2025/10/1 | Accepted: 2025/09/8 | Published: 2025/09/29
References
1. Hertel J, Corbett RO. An updated model of chronic ankle instability. J Athl Train. 2019; 54(6): 572-88. doi.10.4085/1062-6050-344-18 PMid:31162943 PMCid:PMC6602403
2. Gribble PA, Bleakley CM, Caulfield BM, Docherty CL, Fourchet F, Fong DT-P, et al. Evidence review for the 2016 International Ankle Consortium consensus statement on the prevalence, impact and long-term consequences of lateral ankle sprains. Br J Sports Med. 2016;50(24):1496-505. doi.10.1136/bjsports-2016-096189
3. Raymond J, Nicholson LL, Hiller CE, Refshauge KM. The effect of ankle taping or bracing on proprioception in functional ankle instability: a systematic review and meta-analysis. J Sci Med Sport. 2012;15(5):386-92. doi.10.1016/j.jsams.2012.03.008 PMid:22513304
4. Sheth P, Yu B, Laskowski ER, An K-N. Ankle disk training influences reaction times of selected muscles in a simulated ankle sprain. Am J Sports Med. 1997;25(4):538-43. doi.10.1177/036354659702500418 PMid:9240989
5. Bader CE, Giordano NA, McDonald CC, Meghani SH, Polomano RC. Musculoskeletal pain and headache in the active duty military population: an integrative review. Worldviews Evid Based Nurs. 2018;15(4):264-71. doi.10.1111/wvn.12301 PMid:29957866
6. Wikstrom EA, Brown CN. Minimum reporting standards for copers in chronic ankle instability research. Sports Med. 2014; 44(2): 251-68. doi.10.1007/s40279-013-0111-4 PMid:24122774
7. Delahunt E, Remus A. Risk factors for lateral ankle sprains and chronic ankle instability. J Athl Train. 2019; 54(6):611-6. doi.10.4085/1062-6050-44-18 PMid:31161942 PMCid:PMC6602396
8. Pangarkar SS, Kang DG, Sandbrink F, Bevevino A, Tillisch K, Konitzer L, et al. VA/DoD clinical practice guideline: diagnosis and treatment of low back pain. J Gen Intern Med. 2019;34(11):2620-9. doi.10.1007/s11606-019-05086-4 PMid:31529375 PMCid:PMC6848394
9. Wester JU, Jespersen SM, Nielsen KD, Neumann L. Wobble board training after partial sprains of the lateral ligaments of the ankle: a prospective randomized study. J Orthop Sports Phys Ther. 1996; 23(5): 332-6. doi.10.2519/jospt.1996.23.5.332 PMid:8728532
10. Elaraby AER, Shahien M, Jahan AM, Etoom M, Bekhet AH. The efficacy of virtual reality training in the rehabilitation of orthopedic ankle injuries: a systematic review and meta-analysis. Adv Rehabil Sci Pract. 2023; 12: 11795727231151636. doi.10.1177/11795727231151636 PMid:36891135 PMCid:PMC9933927
11. Fong DTP, Hong Y, Chan LK, Yung PSH, Chan KM. A systematic review on ankle injury and ankle sprain in sports. Sports Med. 2007; 37(1):73-94. doi.10.2165/00007256-200737010-00006 PMid:17190537
12. Pallavicini F, Argenton L, Toniazzi N, Aceti L, Mantovani F. Virtual reality applications for stress management training in the military. Aerosp Med Hum Perform. 2016;87(12):1021-30. doi.10.3357/AMHP.4596.2016 PMid:28323588
13. Refshauge KM, Kilbreath SL, Raymond J. The effect of recurrent ankle inversion sprain and taping on proprioception at the ankle. Med Sci Sports Exerc. 2000;32(1):10-5. doi.10.1097/00005768-200001000-00003 PMid:10647523
14. Kim K, Choi B, Lim W. The efficacy of virtual reality assisted versus traditional rehabilitation intervention on individuals with functional ankle instability: a pilot randomized controlled trial. Disabil Rehabil Assist Technol. 2019; 14(3):276-80. doi.10.1080/17483107.2018.1429501 PMid:29385840
15. Kim KJ, Heo M. Effects of virtual reality programs on balance in functional ankle instability. J Phys Ther Sci. 2015;27(10):3097-101. doi.10.1589/jpts.27.3097 PMid:26644652 PMCid:PMC4668143
16. Bhogal SK, Teasell RW, Foley NC, Speechley MR. The PEDro scale provides a more comprehensive measure of methodological quality than the Jadad scale in stroke rehabilitation literature. Journal of clinical epidemiology. 2005;58(7):668-73. doi: 10.1016/j.jclinepi.2005.01.002 PMID: 15939217
17. De Morton NA. The PEDro scale is a valid measure of the methodological quality of clinical trials: a demographic study. Aust J Physiother. 2009; 55(2):129-33. doi.10.1016/S0004-9514(09)70043-1 PMid:19463084
18. Moher D, Pham B, Lawson M, Klassen T. The inclusion of reports of randomised trials published in languages other than English in systematic reviews. Health Technol Assess. 2003;7(41):1-90. doi.10.3310/hta7410 PMid:14670218
19. Hiller CE, Refshauge KM, Bundy AC, Herbert RD, Kilbreath SL. The Cumberland ankle instability tool: a report of validity and reliability testing. Arch Phys Med Rehabil. 2006;87(9):1235-41.
20. doi.10.1016/j.apmr.2006.05.022 PMid:16935061
21. Prieto TE, Myklebust JB, Hoffmann RG, Lovett EG, Myklebust BM. Measures of postural steadiness: differences between healthy young and elderly adults. IEEE Trans Biomed Eng. 1996; 43(9): 956-66. doi.10.1109/10.532130 PMid:9214811
22. Kinzey SJ, Armstrong CW. The reliability of the star-excursion test in assessing dynamic balance. J Orthop Sports Phys Ther. 1998;27(5):356-60. doi.10.2519/jospt.1998.27.5.356 PMid:9580895
23. Ruhe A, Fejer R, Walker B. The test-retest reliability of centre of pressure measures in bipedal static task conditions-a systematic review of the literature. Gait Posture. 2010;32(4):436-45. doi.10.1016/j.gaitpost.2010.09.012 PMid:20947353
24. Cachupe WJ, Shifflett B, Kahanov L, Wughalter EH. Reliability of biodex balance system measures. Meas Phys Educ Exerc Sci. 2001;5(2):97-108. doi.10.1207/S15327841MPEE0502_3.
25. Salehi M, Mohamadzade H, Rasti J, Etemadi Far M. The effect of aerobic exercise, virtual reality and dual tasks exercise on motor function and depression in depressed MS patients. Motor Behav. 2024; 16(55):35-54.
26. Ware Jr JE, Sherbourne CD. The MOS 36-ltem short-form health survey (SF-36): I. Conceptual framework and item selection. Med Care. 1992; 30(6): 473-83. doi.10.1097/00005650-199206000-00002 PMid:1593914
27. French DJ, France CR, Vigneau F, French JA, Evans RT. Fear of movement/(re) injury in chronic pain: a psychometric assessment of the original English version of the Tampa scale for kinesiophobia (TSK). Pain. 2007;127(1-2):42-51. doi.10.1016/j.pain.2006.07.016 PMid:16962238.
28. Lundberg MK, Styf J, Carlsson SG. A psychometric evaluation of the Tampa Scale for Kinesiophobia-from a physiotherapeutic perspective. Physiother Theory Pract. 2004; 20(2):121-33. doi.10.1080/09593980490453002
29. Metgud S, Deshpande M, Sharma G, Fernandes E. Effect of 12 Sessions of Oculus-guided Rehabilitation on Balance and Reaction Time in Recreational Athletes with Ankle Instability: A Randomized Controlled Trial. Indian J Phys Ther Res. 2024; 6(2): 144-52. doi.10.4103/ijptr.ijptr_33_24
30. Shousha TM, Abo-Zaid NA, Hamada HA, Abdelsamee MYA, Behiry MA. Virtual reality versus Biodex training in adolescents with chronic ankle instability: a randomized controlled trial. Arch Med Sci. 2021;19(4):1059. doi.10.5114/aoms/134635 PMid:37560731 PMCid:PMC10408012
31. Paladugu P, Kumar R, Ong J, Waisberg E, Sporn K. Virtual reality-enhanced rehabilitation for improving musculoskeletal function and recovery after trauma. J Orthop Surg Res. 2025;20(1):404. doi.10.1186/s13018-025-05705-3 PMid:40269873 PMCid:PMC12016257
32. Kim KJ, Heo M. Comparison of virtual reality exercise versus conventional exercise on balance in patients with functional ankle instability: a randomized controlled trial. J Back Musculoskelet Rehabil. 2019;32(6):905-11. doi.10.3233/BMR-181376 PMid:30958334
33. Ranjbarzadeh Yamchi F, Letafatkar A, Esmaeilpour S. The Effect of 8 Weeks Virtual Reality Training on Static and Dynamic Balance and Performance in Male Athletes With Functional Ankle Instability. Physical Treatments. 2021; 11(1): 45-54. doi.10.32598/ptj.11.1.453.1
34. Donovan L, Hart JM, Saliba SA, Park J, Feger MA, Herb CC, et al. Rehabilitation for chronic ankle instability with or without destabilization devices: a randomized controlled trial. J Athl Train. 2016;51(3):233-51. doi.10.4085/1062-6050-51.3.09 PMid:26934211 PMCid:PMC4852529
35. Gumaa M, Rehan Youssef A. Is virtual reality effective in orthopedic rehabilitation? A systematic review and meta-analysis. Phys Ther. 2019; 99(10): 1304-25. doi.10.1093/ptj/pzz093 PMid:31343702
36. Almansour AM. The Effectiveness of Virtual Reality in Rehabilitation of Athletes: A Systematic Review and Meta-Analysis. J Pioneering Med Sci. 2024;13:147-54. doi.10.61091/jpms202413423
37. Cotton M. Virtual reality. Virtual Reality, Empathy and Ethics: Springer; 2021. p. 1-22. doi.10.1007/978-3-030-72907-3_1
38. Begum MR, Hossain MA. Validity and reliability of visual analogue scale (VAS) for pain measurement. J Med Case Rep Rev. 2019;2(11).
39. Carlsson AM. Assessment of chronic pain. I. Aspects of the reliability and validity of the visual analogue scale. Pain. 1983; 16(1): 87-101. doi.10.1016/0304-3959(83)90088-X PMid:6602967
40. Rathi B, Ramteke S. Effect of Immersive Virtual Reality in Adjunct to Conventional Physiotherapy on Static Balance, Dynamic Balance and Vertical Jump in Futsal Players with Lateral Ankle Sprain: A Protocol for Randomized Control Trial. F1000Res. 2024;13:625. doi.10.12688/f1000research.151934.1.
41. Burdea GC. Virtual rehabilitation-benefits and challenges. Methods Inf Med. 2003;42(05):519-23. doi.10.1055/s-0038-1634378 PMid:14654886
42. Morel M, Bideau B, Lardy J, Kulpa R. Advantages and limitations of virtual reality for balance assessment and rehabilitation. Neurophysiol Clin. 2015; 45(4-5): 315-26. doi.10.1016/j.neucli.2015.09.007 PMid:26527045
43. Baniasadi T, Ayyoubzadeh SM, Mohammadzadeh N. Challenges and practical considerations in applying virtual reality in medical education and treatment. Oman Med J. 2020; 35(3):e125. doi.10.5001/omj.2020.43 PMid:32489677 PMCid:PMC7232669
44. Kim GJ. A SWOT analysis of the field of virtual reality rehabilitation and therapy. Presence. 2005; 14(2):119-46. doi.10.1162/1054746053967094
45. Wang S, Sun J, Yin X, Li H. Effect of virtual reality technology as intervention for people with kinesiophobia: a meta‐analysis of randomised controlled trials. J Clin Nurs. 2023;32(13-14):3074-86. doi.10.1111/jocn.16397 PMid:35692077
46. Yilmaz Yelvar GD, Çırak Y, Dalkılınç M, Parlak Demir Y, Guner Z, Boydak A. Is physiotherapy integrated virtual walking effective on pain, function, and kinesiophobia in patients with non-specific low-back pain? Randomised controlled trial. Eur Spine J. 2017;26(2):538-45. doi.10.1007/s00586-016-4892-7 PMid:27981455
47. Coja DM, Talaghir LG, Georgescu L, Codreanu C. 629 Effectiveness of Virtual Reality in Reducing Kinesiophobia. A Systematic Review. Balneo PRM Res J. 2023;14(4). doi.10.12680/balneo.2023.629
48. Long Y, Ouyang R-g, Zhang J-q. Effects of virtual reality training on occupational performance and self-efficacy of patients with stroke: a randomized controlled trial. J Neuroeng Rehabil. 2020; 17(1): 150. doi.10.1186/s12984-020-00783-2 PMid:33187532 PMCid:PMC7666452
49. Zhang C, Yu S. Technology to Enhance Patient Motivation in Virtual Reality Rehabilitation: A Review. Games Health J. 2024;13(4):215-33. doi.10.1089/g4h.2023.0069 PMid:39159237
50. Ergen E, Ulkar B. Proprioception and ankle injuries in soccer. Clin Sports Med. 2008;27(1):195-217. doi.10.1016/j.csm.2007.10.002 PMid:18206575
51. Perrott MA, Pizzari T, Cook J. Lumbopelvic exercise reduces lower limb muscle strain injury in recreational athletes. Phys Ther Rev. 2013; 18(1): 24-33 .doi.10.1179/1743288X12Y.0000000055.
52. Azizmohammadi S, Seidi F, Zandi S. Effect of a lumbopelvic stability training program on lower extremity kinematic parameters in low back pain developers during single-leg squat. Phys Ther Sport. 2025.doi.10.1016/j.ptsp.2025.04.007 PMid:40288049
53. Briggs MS, Givens DL, Best TM, Chaudhari AM. Lumbopelvic neuromuscular training and injury rehabilitation: a systematic review. Clin J Sport Med. 2013; 23(3): 160-71. doi.10.1097/JSM.0b013e318280aabb PMid:23507794
54. Fadaei Dehcheshmeh P, Gandomi F, Maffulli N. Effect of lumbopelvic control on landing mechanics and lower extremity muscles' activities in female professional athletes: implications for injury prevention. BMC Sports Sci Med Rehabil. 2021; 13(1): 101. doi.10.1186/s13102-021-00331-y PMCid:PMC8428132
55. Hodges PW. Is there a role for transversus abdominis in lumbo-pelvic stability? Man Ther. 1999; 4(2):74-86. doi.10.1054/math.1999.0169 PMid:10509061
56. Doherty C, Bleakley C, Delahunt E, Holden S. Treatment and prevention of acute and recurrent ankle sprain: an overview of systematic reviews with meta-analysis. Br J Sports Med. 2017; 51(2): 113-25. doi.10.1136/bjsports-2016-096178 PMid:28053200
57. Hubbard TJ, Wikstrom EA. Ankle sprain: pathophysiology, predisposing factors, and management strategies. Open Access J Sports Med. 2010: 115-22. doi.10.2147/OAJSM.S9060 PMid:24198549 PMCid:PMC3781861
58. Kaminski TW, Hertel J, Amendola N, Docherty CL, Dolan MG, Hopkins JT, et al. National Athletic Trainers' Association position statement: conservative management and prevention of ankle sprains in athletes. J Athl Train. 2013; 48(4):528-45. doi.10.4085/1062-6050-48.4.02 PMid:23855363 PMCid:PMC3718356
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ashoury H, Bahrami P. The effect of virtual reality–based rehabilitation on balance, pain, and motor function in athletes with chronic ankle instability: A systematic review. Feyz Med Sci J 2025; 29 (4) :397-410
URL: http://feyz.kaums.ac.ir/article-1-5373-en.html


Creative Commons License
This open access journal is licensed under a Creative Commons Attribution-NonCommercial ۴.۰ International License. CC BY-NC ۴. Design and publishing by Kashan University of Medical Sciences.
Copyright ۲۰۲۳© Feyz Medical Sciences Journal. All rights reserved.
Volume 29, Issue 4 (Bimonthly 2025) Back to browse issues page
مجله علوم پزشکی فیض Feyz Medical Sciences Journal
Persian site map - English site map - Created in 0.15 seconds with 46 queries by YEKTAWEB 4725