[صفحه اصلی ]   [Archive] [ English ]  
:: صفحه اصلي :: درباره مجله :: شماره جاری :: تمام شماره‌ها :: جستجو :: ثبت نام :: ارسال مقاله :: تماس با ما ::
بخش‌های اصلی
صفحه اصلی::
اطلاعات نشریه::
بانک‌ها و نمایه‌ها::
آرشیو مجله و مقالات::
برای نویسندگان::
اخلاق در پژوهش::
برای داوران::
تسهیلات پایگاه::
تماس با ما::
هوش مصنوعی::
::
Basic and Clinical Biochemistry and Nutrition
..
DOAJ
..
CINAHL
..
EBSCO
..
IMEMR
..
ISC
..
جستجو در پایگاه

جستجوی پیشرفته
..
دریافت اطلاعات پایگاه
نشانی پست الکترونیک خود را برای دریافت اطلاعات و اخبار پایگاه، در کادر زیر وارد کنید.
..
enamad
..
:: دوره 29، شماره 6 - ( دوماه نامه 1404 ) ::
جلد 29 شماره 6 صفحات 642-622 برگشت به فهرست نسخه ها
نقش فاکتور رونویسی فعال‌کننده ۳ در سرطان: تنظیم‌گر اصلی در فرایند سرطان‌زایی با پتانسیل‌های درمانی
الهام نادرزاده ، محمد کارگر ، علی فرهادی* ، محمد جواد مختاری
گروه علوم آزمایشگاهی، دانشکده پیراپزشکی، دانشگاه علوم پزشکی شیراز، ایران ، farhadi_a@sums.ac.ir
چکیده:   (517 مشاهده)
زمینه و هدف: فاکتور رونویسی فعال‌کننده ۳ (ATF3) که یکی از اعضای خانواده ATF/CREB است، به عنوان یکی از حسگرهای اصلی استرس سلولی، نقشی وابسته به بافت در سرطان‌زایی ایفا می‌کند و می‌تواند به عنوان یک انکوژن یا یک سرکوب‌گر تومور عمل نماید. این مرور سیستماتیک با هدف ترسیم نقش چندوجهی ATF3 در پاتوژنز سرطان‌های مختلف و بررسی پتانسیل آن به عنوان یک هدف درمانی طراحی شد.
روش‌ها: جستجوی سیستماتیک مقالات در پایگاه‌های علمی PubMed،ScienceDirect  و Web of Science تا تاریخ ۱۰ مارس ۲۰۲۵ با استفاده از کلیدواژه‌های فاکتور رونویسی فعال‌کننده ۳، پروتئین ATF3، و سرطان انجام شد. از بین مقالات بازیابی‌شده، بر اساس معیارهای ورود و خروج، ۷۴ مقاله برای تحلیل نهایی انتخاب گردیدند.
یافته‌ها: شواهد موجود نشان می‌دهد که ATF3 در طیفی از سرطان‌ها (مانند پستان، پروستات، کولورکتال، ریه و کبد) به طور فعال در تنظیم فرآیندهای کلیدی سرطان‌زایی از جمله تکثیر سلولی، آپوپتوز، متاستاز، مقاومت دارویی و تعدیل پاسخ ایمنی دخیل است. این فاکتور از طریق تعامل با مسیرهای سیگنالینگ محوری مانند p53،TGF-β  و NF-κB عمل می‌کند. نکته حائز اهمیت، ماهیت دوگانه (Pro- tumorigenic  و Anti-tumorigenic) فعالیت ATF3 است که به شدت تحت تأثیر ریزمحیط تومور و زمینه سلولی قرار دارد.

نتیجه‌گیری: ATF3 یک تنظیم‌کننده حیاتی هموستاز سلولی است که سیگنال‌های استرس خارج‌سلولی و داخل‌سلولی را در پاسخ‌های ژنومی ادغام می‌کند. نقش دوگانه آن در انکوژنز نشان‌دهنده نیاز به تحقیقات بیشتر برای تعیین عملکردهای وابسته به شرایط آن است. درک بهتر مکانیسم‌های تنظیمی ATF3 می‌تواند دیدگاه‌های جدیدی برای توسعه درمان‌های هدفمند با هدف تعدیل فعالیت آن در انواع خاصی از سرطان ارائه دهد.
واژه‌های کلیدی: سرطان، فاکتور رونویسی فعال‌کننده ۳ (ATF3)، سرکوب‌گر تومور، شخصی‌سازی درمان، مرور سیستماتیک
     
نوع مطالعه: مروري | موضوع مقاله: medicine, paraclinic
دریافت: 1404/4/25 | ویرایش نهایی: 1404/10/15 | پذیرش: 1404/8/4 | انتشار: 1404/10/9
فهرست منابع
1. Seyfried TN, Shelton LM. Cancer as a metabolic disease. Nutr Metab (Lond). 2010; 7: 1-22. doi.10.1186/1743-7075-7-7 PMid:20181022 PMCid:PMC2845135
2. Ku HC, Cheng CF. Master Regulator Activating Transcription Factor 3 (ATF3) in Metabolic Homeostasis and Cancer. Front Endocrinol (Lausanne). 2020;11:556. doi.10.3389/fendo.2020.00556 PMid:32922364 PMCid:PMC7457002
3. Li L, Sun RM, Jiang GQ. ATF3 Demethylation Promotes the Transcription of ARL4C, Which Acts as a Tumor Suppressor in Human Breast Cancer. Onco Targets Ther. 2020;13:3467-76. doi.10.2147/OTT.S243632 PMid:32425548 PMCid:PMC7195577
4. Tian H, Chou FJ, Tian J, Zhang Y, You B, Huang CP, et al. ASC-J9® suppresses prostate cancer cell proliferation and invasion via altering the ATF3-PTK2 signaling. J Exp Clin Cancer Res. 2021;40(1):3. doi.10.1186/s13046-020-01760-2 PMid:33390173 PMCid:PMC7780640
5. Inoue M, Uchida Y, Edagawa M, Hirata M, Mitamura J, Miyamoto D, et al. The stress response gene ATF3 is a direct target of the Wnt/β-catenin pathway and inhibits the invasion and migration of HCT116 human colorectal cancer cells. PLoS One. 2018;13(7):e0194160. doi.10.1371/journal.pone.0194160 PMid:29966001 PMCid:PMC6028230
6. Du A, Jiang Y, Fan C. NDRG1 Downregulates ATF3 and Inhibits Cisplatin-Induced Cytotoxicity in Lung Cancer A549 Cells. Int J Med Sci. 2018; 15(13): 1502-7 .doi.10.7150/ijms.28055 PMid:30443171 PMCid:PMC6216061
7. Hao ZF, Ao JH, Zhang J, Su YM, Yang RY. ATF3 Activates STAT3 Phosphorylation through Inhibition of p53 Expression in Skin Cancer Cells. Asian Pac J Cancer Prev. 2013; 14(12):7439-44. doi.10.7314/APJCP.2013.14.12.7439 PMid:24460316
8. Ramezani M, Saeidi M, Zarei A, Hasani M. Investigating the demographic characteristics and pathological manifestations of thyroid Cancer during the last two decades (1997-2017) in patients referred to Baqiyatallah hospital, Tehran, Iran. J Diabetes Metab Disord. 2020;19:1165-72. doi.10.1007/s40200-020-00617-x PMid:33553021 PMCid:PMC7843909
9. Xiao X, Chen M, Sang Y, Xue J, Jiang K, Chen Y, et al. Methylation-Mediated Silencing of ATF3 Promotes Thyroid Cancer Progression by Regulating Prognostic Genes in the MAPK and PI3K/AKT Pathways. Thyroid. 2023. doi.10.1089/thy.2023.0157 PMid:37742107
10. Yan L, Gaddis S, Coletta LD, Repass J, Powell KL, Simper MS, et al. ATF3-Induced Mammary Tumors Exhibit Molecular Features of Human Basal-Like Breast Cancer. Int J Mol Sci. 2021;22(5). doi.10.3390/ijms22052353 PMid:33652981 PMCid:PMC7956570
11. Wolford CC, McConoughey SJ, Jalgaonkar SP, Leon M, Merchant AS, Dominick JL, et al. Transcription factor ATF3 links host adaptive response to breast cancer metastasis. J Clin Invest. 2013; 123(7):2893-906. doi.10.1172/JCI64410 PMid:23921126 PMCid:PMC3696548
12. Zhao W, Sun M, Li S, Chen Z, Geng D. Transcription factor ATF3 mediates the radioresistance of breast cancer. J Cell Mol Med. 2018; 22(10):4664-75. doi.10.1111/jcmm.13688 PMid:30117642 PMCid:PMC6156394
13. Gokulnath M, Swetha R, Thejaswini G, Shilpa P, Selvamurugan N. Transforming growth factor-β1 regulation of ATF-3, c-Jun and JunB proteins for activation of matrix metalloproteinase-13 gene in human breast cancer cells. Int J Biol Macromol. 2017; 94(Pt A): 370-7. doi.10.1016/j.ijbiomac.2016.10.026 PMid:27751807
14. Rohini M, Vairamani M, Selvamurugan N. TGF-β1-stimulation of NFATC2 and ATF3 proteins and their interaction for matrix metalloproteinase 13 expression in human breast cancer cells. Int J Biol Macromol. 2021; 192: 1325-30. doi.10.1016/j.ijbiomac.2021.10.099 PMid:34687766
15. Rohini M, Arumugam B, Vairamani M, Selvamurugan N. Stimulation of ATF3 interaction with Smad4 via TGF-β1 for matrix metalloproteinase 13 gene activation in human breast cancer cells. Int J Biol Macromol. 2019;134:954-61. doi.10.1016/j.ijbiomac.2019.05.062 PMid:31082421
16. Li W, Yang C, Li J, Li X, Zhou P. MicroRNA-217 aggravates breast cancer through activation of NF1-mediated HSF1/ATG7 axis and c-Jun/ATF3/MMP13 axis. Hum Cell. 2023; 36(1): 377-92. doi.10.1007/s13577-022-00817-y PMid:36357766
17. Perrone M, Chiodoni C, Lecchi M, Botti L, Bassani B, Piva A, et al. ATF3 Reprograms the Bone Marrow Niche in Response to Early Breast Cancer Transformation. Cancer Res. 2023;83(1):117-29. doi.10.1158/0008-5472.CAN-22-0651 PMid:36318106 PMCid:PMC9811157
18. Huang S, Yang J, Shen N, Xu Q, Zhao Q, editors. Artificial intelligence in lung cancer diagnosis and prognosis: Current application and future perspective. Semin Cancer Biol. 2023. doi.10.1016/j.semcancer.2023.01.006 PMid:36682439
19. Qian X, Zhu L, Xu M, Liu H, Yu X, Shao Q, et al. Shikonin suppresses small cell lung cancer growth via inducing ATF3-mediated ferroptosis to promote ROS accumulation. Chem Biol Interact. 2023; 382: 110588. doi.10.1016/j.cbi.2023.110588 PMid:37268198
20. Bi R, Hu R, Jiang L, Wen B, Jiang Z, Liu H, et al. Butyrate enhances erastin-induced ferroptosis of lung cancer cells via modulating the ATF3/SLC7A11 pathway. Environ Toxicol. 2023. doi.10.1002/tox.23857 PMid:37341073
21. Liu CQ, Ma YL, Qin Q, Wang PH, Luo Y, Xu PF, et al. Epidemiology of esophageal cancer in 2020 and projections to 2030 and 2040. Thorac Cancer. 2023; 14(1):3-11. doi.10.1111/1759-7714.14745 PMid:36482832 PMCid:PMC9807450
22. Liang Y, Jiang Y, Jin X, Chen P, Heng Y, Cai L, et al. Neddylation inhibition activates the protective autophagy through NF-κB-catalase-ATF3 Axis in human esophageal cancer cells. Cell Commun Signal. 2020; 18(1):72. doi.10.1186/s12964-020-00576-z PMid:32398095 PMCid:PMC7218644
23. Li D, Yan M, Sun F, Song J, Hu X, Yu S, et al. miR-498 inhibits autophagy and M2-like polarization of tumor-associated macrophages in esophageal cancer via MDM2/ATF3. Epigenomics. 2021; 13(13):1013-30. doi.10.2217/epi-2020-0341 PMid:34114479
24. Shao CJ, Zhou HL, Gao XZ, Xu CF. Downregulation of miR-221-3p promotes the ferroptosis in gastric cancer cells via upregulation of ATF3 to mediate the transcription inhibition of GPX4 and HRD1. Transl Oncol. 2023;32:101649. doi.10.1016/j.tranon.2023.101649 PMid:36947996 PMCid:PMC10040875
25. Fu D, Wang C, Yu L, Yu R. Induction of ferroptosis by ATF3 elevation alleviates cisplatin resistance in gastric cancer by restraining Nrf2/Keap1/xCT signaling. Cell Mol Biol Lett. 2021; 26(1):26. doi.10.1186/s11658-021-00271-y PMid:34098867 PMCid:PMC8186082
26. Xie G, Dong P, Chen H, Xu L, Liu Y, Ma Y, et al. Decreased expression of ATF3, orchestrated by β-catenin/TCF3, miR-17-5p and HOXA11-AS, promoted gastric cancer progression via increased β-catenin and CEMIP. Exp Mol Med. 2021; 53(11): 1706-22. doi.10.1038/s12276-021-00694-9 PMid:34728784 PMCid:PMC8639750
27. Sun R, Lü W, Liu Z, Yang Y, Wang X, Zhao X, et al. FOXI1 inhibits gastric cancer cell proliferation by activating miR-590/ATF3 axis via integrating ChIP-seq and RNA-seq data. Prog Biophys Mol Biol. 2021; 163: 34-45. doi.10.1016/j.pbiomolbio.2021.02.003 PMid:33610681
28. He L, Feng A, Guo H, Huang H, Deng Q, Zhao E, et al. LRG1 mediated by ATF3 promotes growth and angiogenesis of gastric cancer by regulating the SRC/STAT3/VEGFA pathway. Gastric Cancer. 2022; 25(3):527-41. doi.10.1007/s10120-022-01279-9 PMid:35094168
29. Molfetta R, Paolini R. The controversial role of intestinal mast cells in colon cancer. Cells. 2023;12(3):459. doi.10.3390/cells12030459 PMid:36766801 PMCid:PMC9914221
30. Liu J, Edagawa M, Goshima H, Inoue M, Yagita H, Liu Z, et al. Role of ATF3 in synergistic cancer cell killing by a combination of HDAC inhibitors and agonistic anti-DR5 antibody through ER stress in human colon cancer cells. Biochem Biophys Res Commun. 2014;445(2):320-6. doi.10.1016/j.bbrc.2014.01.184 PMid:24530917
31. Song HM, Park GH, Eo HJ, Jeong JB. Naringenin-Mediated ATF3 Expression Contributes to Apoptosis in Human Colon Cancer. Biomol Ther (Seoul). 2016; 24(2): 140-6. doi.10.4062/biomolther.2015.109 PMid:26797111 PMCid:PMC4774494
32. Lee SH, Min KW, Zhang X, Baek SJ. 3,3′-Diindolylmethane induces activating transcription factor 3 (ATF3) via ATF4 in human colorectal cancer cells. J Nutr Biochem. 2013;24(4):664-71. doi.10.1016/j.jnutbio.2012.03.016 PMid:22819556 PMCid:PMC3481000
33. Kim KJ, Lee J, Park Y, Lee SH. ATF3 Mediates Anti-Cancer Activity of Trans-10, cis-12-Conjugated Linoleic Acid in Human Colon Cancer Cells. Biomol Ther (Seoul). 2015;23(2):134-40. doi.10.4062/biomolther.2014.107 PMid:25767681 PMCid:PMC4354314
34. Park GH, Park JH, Eo HJ, Song HM, Woo SH, Kim MK, et al. The induction of activating transcription factor 3 (ATF3) contributes to anti-cancer activity of Abeliophyllum distichum Nakai in human colorectal cancer cells. BMC Complement Altern Med. 2014;14:487. doi.10.1186/1472-6882-14-487 PMid:25494848 PMCid:PMC4302050
35. Suk FM, Jou WJ, Lin RJ, Lin SY, Tzeng FY, Liang YC. 15,16-Dihydrotanshinone I-induced Apoptosis in Human Colorectal Cancer Cells: Involvement of ATF3. Anticancer Res. 2013; 33(8): 3225-31.
36. Zarei A, Vaezi G, Malekirad AA, Abdollahi M. Hypoglycemic and hypolipidemic activities of Salvia hydrangea in streptozotocin-induced diabetes in rats. Iran J Basic Med Sci. 2015;18(4):417.
37. Li S, Yan G, Yue M, Wang L. Extracellular vesicles-derived microRNA-222 promotes immune escape via interacting with ATF3 to regulate AKT1 transcription in colorectal cancer. BMC Cancer. 2021; 21(1):349. doi.10.1186/s12885-021-08063-5 PMid:33794833 PMCid:PMC8017736
38. Zhu H, Liu M, Zhang N, Pan H, Lin G, Li N, et al. Serum and Adipose Tissue mRNA Levels of ATF3 and FNDC5/Irisin in Colorectal Cancer Patients With or Without Obesity. Front Physiol. 2018;9:1125. doi.10.3389/fphys.2018.01125 PMid:30246803 PMCid:PMC6140752
39. Tse JW, Chueh AC, Luk IY, Chionh F, Yeung Y, Corner GA, et al. Histone deacetylase and proteasome inhibitors synergistically induce apoptosis in colon cancer, multiple myeloma and CTCL cells through induction of the immediate early genes ATF3 and JUN. Cancer Res. 2014;74(19). doi.10.1158/1538-7445.AM2014-5112
40. Kim KJ, Chei S, Choi SY, Lee OH, Lee BY. Pterostilbene activates the GRP78-elF2α-ATF3 cascade of ER stress and subsequently induces apoptosis in human colon cancer cells. J Funct Foods. 2016; 26: 539-47. doi.10.1016/j.jff.2016.08.027
41. Chen D, Li Q, Chen H. Genistein-induced histone modifications on ATF3 may contribute to cell cycle arrest and apoptosis in human colon cancer cell line SW620. FASEB J. 2014; 28(1). doi.10.1096/fasebj.28.1_supplement.800.8
42. Yan F, Ying L, Li X, Qiao B, Meng Q, Yu L, et al. Overexpression of the transcription factor ATF3 with a regulatory molecular signature associates with the pathogenic development of colorectal cancer. Oncotarget. 2017;8(29):47020-36. doi.10.18632/oncotarget.16638 PMid:28402947 PMCid:PMC5564541
43. Youns M, Askoura M, Abbas HA, Attia GH, Khayyat AN, Goda RM, et al. Celastrol Modulates Multiple Signaling Pathways to Inhibit Proliferation of Pancreatic Cancer via DDIT3 and ATF3 Up-Regulation and RRM2 and MCM4 Down-Regulation. Onco Targets Ther. 2021;14:3849-60. doi.10.2147/OTT.S313933 PMid:34194230 PMCid:PMC8238076
44. Li W, Han S, Hu P, Chen D, Zeng Z, Hu Y, et al. LncRNA ZNFTR functions as an inhibitor in pancreatic cancer by modulating ATF3/ZNF24/VEGFA pathway. Cell Death Dis. 2021; 12(9):830.
45. doi.10.1038/s41419-021-04119-3 PMid:34480024 PMCid:PMC8417266
46. Tian K, Wei J, Wang R, Wei M, Hou F, Wu L. Sophoridine derivative 6j inhibits liver cancer cell proliferation via ATF3 mediated ferroptosis. Cell Death Discov. 2023; 9(1): 296. doi.10.1038/s41420-023-01597-6 PMid:37580343 PMCid:PMC10425377
47. 46. Pinsky PF, Parnes H. Screening for prostate cancer. N Engl J Med. 2023; 388(15):1405-14. doi.10.1056/NEJMcp2209151 PMid:37043655
48. Wang Z, Yan C. Emerging roles of ATF3 in the suppression of prostate cancer. Mol Cell Oncol. 2016; 3(1): e1010948. doi.10.1080/23723556.2015.1010948 PMid:27308526 PMCid:PMC4845162
49. Wang Z, Xu D, Ding HF, Kim J, Zhang J, Hai T, et al. Loss of ATF3 promotes Akt activation and prostate cancer development in a Pten knockout mouse model. Oncogene. 2015; 34(38):4975-84. doi.10.1038/onc.2014.426 PMid:25531328 PMCid:PMC4476969
50. Liu Y, Gao F, Jiang H, Niu L, Bi Y, Young CYF, et al. Induction of DNA damage and ATF3 by retigeric acid B, a novel topoisomerase II inhibitor, promotes apoptosis in prostate cancer cells. Cancer Lett. 2013;337(1):66-76. doi.10.1016/j.canlet.2013.05.022 PMid:23693077
51. Kan L, Huang Y, Liu Z. WITHDRAWN: JUN and ATF3 are deficient in prostate cancer patients and their delivery in vivo via lipid nanoparticles has therapeutic efficacy by enhancing immune surveillance. Pharmacol Res. 2023;194:106753. doi.10.1016/j.phrs.2023.106753 PMid:37011775
52. Ashrafizadeh M, Zarrabi A, Karimi‐Maleh H, Taheriazam A, Mirzaei S, Hashemi M, et al. (Nano) platforms in bladder cancer therapy: Challenges and opportunities. Bioeng Transl Med. 2023; 8(1):e10353. doi.10.1002/btm2.10353 PMid:36684065 PMCid:PMC9842064
53. Yuan XL, Yu L, Li JH, Xie GH, Rong TT, Zhang L, et al. ATF3 Suppresses Metastasis of Bladder Cancer by Regulating Gelsolin-Mediated Remodeling of the Actin Cytoskeleton. Cancer Res. 2013; 73(12):3625-37. doi.10.1158/0008-5472.CAN-12-3879 PMid:23536558
54. Correction: ATF3 Suppresses Metastasis of Bladder Cancer by Regulating Gelsolin-Mediated Remodeling of the Actin Cytoskeleton. Cancer Res. 2016; 76(15):4592. doi.10.1158/0008-5472.CAN-16-1641 PMid:27480960
55. Kim DE, Procopio MG, Ghosh S, Jo SH, Goruppi S, Magliozzi F, et al. Convergent roles of ATF3 and CSL in chromatin control of cancer-associated fibroblast activation. J Exp Med. 2017;214(8):2349-68. doi.10.1084/jem.20170724 PMid:28684431 PMCid:PMC5551580
56. Avraham S, Korin B, Aviram S, Shechter D, Shaked Y, Aronheim A. ATF3 and JDP2 deficiency in cancer associated fibroblasts promotes tumor growth via SDF-1 transcription. Oncogene. 2019; 38(20):3812-23. doi.10.1038/s41388-019-0692-y PMid:30670778 PMCid:PMC6756089
57. Brown Y, Hua S, Tanwar PS. Extracellular matrix in high-grade serous ovarian cancer: Advances in understanding of carcinogenesis and cancer biology. Matrix Biol. 2023. doi.10.1016/j.matbio.2023.02.004 PMid:36781087
58. Shen L, Lee S, Joo JC, Hong E, Cui ZY, Jo E, et al. Chelidonium majus Induces Apoptosis of Human Ovarian Cancer Cells via ATF3-Mediated Regulation of Foxo3a by Tip60. J Microbiol Biotechnol. 2022;32(4):493-503. doi.10.4014/jmb.2109.09030 PMid:35283423 PMCid:PMC9628819
59. Changizi-Ashtiyani S, Zarei A, Rezaei A, Ramezani M, Tavakol A. A quick review of the effects of Chelidonium majus L and its active components on health and disease treatment. J Kerman Univ Med Sci. 2017;24(5):435-47.
60. Kooti A, Abuei H, Farhadi A, Behzad-Behbahani A, Zarrabi M. Activating transcription factor 3 mediates apoptotic functions through a p53-independent pathway in human papillomavirus 18 infected HeLa cells. Virus Genes. 2022;58(2):88-97. doi.10.1007/s11262-022-01887-8 PMid:35129760
61. Akbarpour Arsanjani A, Abuei H, Behzad-Behbahani A, Bagheri Z, Arabsolghar R, Farhadi A. Activating transcription factor 3 inhibits NF κB p65 signaling pathway and mediates apoptosis and cell cycle arrest in cervical cancer cells. Infect Agents Cancer. 2022; 17(1):62. doi.10.1186/s13027-022-00475-7 PMid:36522783 PMCid:PMC9753250
62. Naderzadeh E, Kargar M, Mokhtari MJ, Farhadi A. Activating transcription factor 3 induces oxidative stress and genotoxicity, transcriptionally modulating metastasis-related gene expression in human papillomavirus-infected cervical cancer. Virol J. 2025;22(1):46. doi.10.1186/s12985-025-02675-0 PMid:39994644 PMCid:PMC11849226
63. Mutalifu Z, Buranjiang G, Jin H. Activating transcription factor 3 enhances chemosensitivity of dichloroacetic acid via p53 pathway in cervical squamous epithelial cancer cells. Trop J Pharm Res. 2018;17(12):2393-8. doi.10.4314/tjpr.v17i12.12
64. Oh YK, Lee HJ, Jeong MH, Rhee M, Mo JW, Song EH, et al. Role of activating transcription factor 3 on TAp73 stability and apoptosis in paclitaxel-treated cervical cancer cells. Mol Cancer Res. 2008;6(7):1232-49. doi.10.1158/1541-7786.MCR-07-0297 PMid:18644986 PMCid:PMC3783268
65. Lin DD, Sun YN. Research advances in ATF3 and tumor. Med Rev. 2012;18:219-21.
66. Liao JR, Lai XL, Cao L, Lin WS, Huang CZ, Li JY, et al. Effect of overexpression of activating transcription factor 3 on biological behaviors of human colorectal cancer HCT116 cells. Int J Clin Exp Pathol. 2017;10(3):2928-38.
67. 66. Buganim Y, et al. Transcriptional activity of ATF3 in the stromal compartment of tumors promotes cancer progression. Carcinogenesis. 2011;32(12):1749-57. doi.10.1093/carcin/bgr203 PMid:21900211
68. Wang Z, He Y, Deng W, Lang L, Yang H, Jin B, et al. Atf3 deficiency promotes genome instability and spontaneous tumorigenesis in mice. Oncogene. 2018;37(1):18-27. doi.10.1038/onc.2017.310 PMid:28869597 PMCid:PMC6179156
69. Yan C, Boyd DD. ATF3 Regulates the Stability of p53: A Link to Cancer. Cell Cycle. 2006; 5(9):926-9. doi.10.4161/cc.5.9.2714 PMid:16628010
70. Yin X, DeWille JW, Hai T. A potential dichotomous role of ATF3, an adaptive-response gene, in cancer development. Oncogene. 2008;27(15):2118-27. doi.10.1038/sj.onc.1210861 PMid:17952119
71. Haakenson JK, Kester M, Liu D. The ATF/CREB Family of Transcription Factors in Breast Cancer. 2012.
72. Aft RL. Targeting New Pathways and Cell Death in Breast Cancer. 2012. doi.10.5772/1744
73. Potential dual role of activating transcription factor 3 in colorectal cancer. Anticancer Res. 2016; 36(2): 509.
74. Li J, Yang Z, Chen Z, Bao Y, Zhang H, Fang X, et al. ATF3 suppresses ESCC via downregulation of ID1. Oncol Lett. 2016; 12(3):1642-8. doi.10.3892/ol.2016.4832 PMid:27602100 PMCid:PMC4998220
75. Wang F, Li J, Wang H, Zhang F, Gao J. Activating transcription factor 3 inhibits endometrial carcinoma aggressiveness via JunB suppression. Int J Oncol. 2020; 57(3):707-20. doi.10.3892/ijo.2020.5084 PMid:32582999 PMCid:PMC7384851
ارسال پیام به نویسنده مسئول

ارسال نظر درباره این مقاله
نام کاربری یا پست الکترونیک شما:

CAPTCHA



XML   English Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Naderzadeh E, Kargar M, Farhadi A, Mokhtari M J. The role of activating transcription factor 3 in cancer: A key regulator of oncogenesis with therapeutic potential. Feyz Med Sci J 2025; 29 (6) :622-642
URL: http://feyz.kaums.ac.ir/article-1-5372-fa.html

نادرزاده الهام، کارگر محمد، فرهادی علی، مختاری محمد جواد. نقش فاکتور رونویسی فعال‌کننده ۳ در سرطان: تنظیم‌گر اصلی در فرایند سرطان‌زایی با پتانسیل‌های درمانی. مجله علوم پزشکی فيض. 1404; 29 (6) :622-642

URL: http://feyz.kaums.ac.ir/article-1-5372-fa.html



Creative Commons License
This open access journal is licensed under a Creative Commons Attribution-NonCommercial ۴.۰ International License. CC BY-NC ۴. Design and publishing by Kashan University of Medical Sciences.
Copyright ۲۰۲۳© Feyz Medical Sciences Journal. All rights reserved.
دوره 29، شماره 6 - ( دوماه نامه 1404 ) برگشت به فهرست نسخه ها
مجله علوم پزشکی فیض Feyz Medical Sciences Journal
Persian site map - English site map - Created in 0.09 seconds with 44 queries by YEKTAWEB 4732