[صفحه اصلی ]   [Archive] [ English ]  
:: صفحه اصلي :: درباره مجله :: شماره جاری :: تمام شماره‌ها :: جستجو :: ثبت نام :: ارسال مقاله :: تماس با ما ::
بخش‌های اصلی
صفحه اصلی::
اطلاعات نشریه::
بانک‌ها و نمایه‌ها::
آرشیو مجله و مقالات::
برای نویسندگان::
اخلاق در پژوهش::
برای داوران::
تسهیلات پایگاه::
تماس با ما::
هوش مصنوعی::
::
Basic and Clinical Biochemistry and Nutrition
..
DOAJ
..
CINAHL
..
EBSCO
..
IMEMR
..
ISC
..
جستجو در پایگاه

جستجوی پیشرفته
..
دریافت اطلاعات پایگاه
نشانی پست الکترونیک خود را برای دریافت اطلاعات و اخبار پایگاه، در کادر زیر وارد کنید.
..
enamad
..
:: دوره 29، شماره 1 - ( دوماه نامه 1404 ) ::
جلد 29 شماره 1 صفحات 122-109 برگشت به فهرست نسخه ها
اثرات مصرف فیتواستروژن‌ها بر سندرم تخمدان پلی‌کیستیک: یک مطالعه مروری نظام‌مند
مینو اکبرزاده مرشدی ، محمد محمدی ، آزاده امینیان فر*
مرکز تحقیقات بیوشیمی و تغذیه در بیماری های متابولیک، دانشگاه علوم پزشکی کاشان، کاشان، ایران ، aaminianfar@gmail.com
چکیده:   (427 مشاهده)
زمینه و هدف: سندرم تخمدان پلی کیستیک یا PCOS شایع‌ترین اختلال غدد درون‌ریز زنان است؛ کاهش وزن و فیتواستروژن‌ها نقش مهمی در بهبود علائم آن دارند. هدف از مطالعه حاضر، مرور نظام‌مند نتایج کارآزمایی‌های بالینی انجام‌شده در زمینه تأثیر فیتواستروژن‌ها بر شاخص‌های متابولیک و سلامت زنان مبتلا به PCOS است.
روش‌ها: در این مطالعه مروری نظام‌مند، کارآزمایی‌های بالینی مرتبط با اثر فیتواستروژن‌ها بر شاخص‌های متابولیک و سلامت از جمله شاخص‌های هورمونی، التهابی، استرس اکسیداتیو، باروری، نمایه‌های لیپیدی، میکروبیوم روده، سندرم متابولیک و مقاومت به انسولین در زنان مبتلا به PCOS بررسی شدند. جستجوی منابع با استفاده از کلیدواژه‌های مرتبط در پایگاه‌های داده معتبر از جمله PubMed/Medline، Scopus، ScienceDirect، Google Scholar، Cochrane Library، ISI Web of Knowledge، Embase  و SID، در بازه زمانی اکتبر 1990 تا اکتبر 2024 انجام شد.
یافته‌ها: در مجموع، ۱۸ کارآزمایی بالینی وارد تحلیل نهایی شدند. نتایج نشان دادند که مصرف فیتواستروژن‌ها می‌تواند با کاهش سطح هورمون‌های تستوسترون و LH، تخمک‌گذاری را بهبود بخشد. همچنین، فیتواستروژن‌ها با کاهش فاکتورهای التهابی مانند  IL-6، TNF-α  و CRP در کاهش علائم التهابی مؤثر واقع شده‌اند. این ترکیبات با کمک به کاهش وزن، احتمال بروز سندرم متابولیک را نیز کاهش داده‌اند. افزون بر این، فیتواستروژن‌ها از طریق افزایش سطح گلوتاتیون و کاهش مالون‌دی‌آلدئید در کاهش استرس اکسیداتیو و بهبود مقاومت به انسولین و میکروبیوم روده نقش داشتند. با این حال، اثر آن‌ها بر نمایه‌های لیپیدی HDL، LDL،VLDL  و همچنین بر ضخامت آندومتر و شاخص‌های باروری نتایج متناقضی را نشان داد.
نتیجه‌گیری: نتایج این مرور نظام‌مند نشان‌دهنده اثربخشی نسبی فیتواستروژن‌ها در بهبود برخی از شاخص‌های متابولیک و سلامت زنان مبتلا به سندرم تخمدان پلی‌کیستیک است. با این وجود، انجام مطالعات بیشتر با طراحی دقیق‌تر برای ارزیابی اثرات این ترکیبات، به‌ویژه در زمینه فاکتورهای لیپیدی و باروری، ضروری به‌نظر می‌رسد.

واژه‌های کلیدی: سندرم تخمدان پلی‌کیستیک، فیتواستروژن، هورمون‌های جنسی، ناباروری، التهاب
متن کامل [PDF 530 kb]   (154 دریافت)    
نوع مطالعه: مروري | موضوع مقاله: medicine, paraclinic
دریافت: 1403/11/9 | ویرایش نهایی: 1404/2/3 | پذیرش: 1404/1/18 | انتشار: 1404/2/2
فهرست منابع
1. Luo M, Zheng LW, Wang YS, Huang JC, Yang ZQ, Yue ZP, et al. Genistein exhibits therapeutic potential for PCOS mice via the ER-Nrf2-Foxo1-ROS pathway. Food Funct. 2021; 12(18): 8800-11. doi:10.1039/D1FO00684C PMid:34374402
2. Saei Ghare Naz M, Ghasemi V, Amirshekari S, Ramezani Tehrani F. Polycystic Ovary Syndrome and Irritable Bowel Syndrome: Is There a Common Pathway? Endocrinol Diabetes Metab. 2024; 7(2): e00477. doi:10.1002/edm2.477 PMid:38494583 PMCid:PMC10944984
3. Consensus on infertility treatment related to polycystic ovary syndrome. Hum Reprod. 2008; 23(3): 462-77. doi:10.1093/humrep/dem426 PMid:18308833
4. Wang R, Mol BW. The Rotterdam criteria for polycystic ovary syndrome: evidence-based criteria? Hum Reprod. 2017; 32(2):261-4. doi:10.1093/humrep/dew287 PMid:28119448
5. Christ JP, Cedars MI. Current Guidelines for Diagnosing PCOS. Diagnostics (Basel). 2023; 13(6). doi:10.3390/diagnostics13061113 PMid:36980421 PMCid:PMC10047373
6. Kahal H, Kyrou I, Tahrani AA, Randeva HS. Obstructive sleep apnoea and polycystic ovary syndrome: A comprehensive review of clinical interactions and underlying pathophysiology. Clin Endocrinol (Oxf). 2017; 87(4): 313-9. doi:10.1111/cen.13392 PMid:28640938
7. Zehravi M, Maqbool M, Ara I. Depression and anxiety in women with polycystic ovarian syndrome: a literature survey. Int J Adolesc Med Health. 2021; 33(6): 367-73. doi:10.1515/ijamh-2021-0092 PMid:34420269
8. Chittenden BG, Fullerton G, Maheshwari A, Bhattacharya S. Polycystic ovary syndrome and the risk of gynaecological cancer: a systematic review. Reprod Biomed Online. 2009; 19(3): 398-405. doi:10.1016/S1472-6483(10)60175-7 PMid:19778486
9. Wang K, Li Y, Chen Y. Androgen excess: a hallmark of polycystic ovary syndrome. Front Endocrinol (Lausanne). 2023; 14:1273542. doi:10.3389/fendo.2023.1273542 PMid:38152131 PMCid:PMC10751361
10. Jalilian A, Kiani F, Sayehmiri F, Sayehmiri K, Khodaee Z, Akbari M. Prevalence of polycystic ovary syndrome and its associated complications in Iranian women: A meta-analysis. Iran J Reprod Med. 2015; 13(10): 591-604.
11. Shahid R, Iahtisham Ul H, Mahnoor, Awan KA, Iqbal MJ, Munir H, Saeed I. Diet and lifestyle modifications for effective management of polycystic ovarian syndrome (PCOS). J Food Biochem. 2022; 46(7): e14117. doi:10.1111/jfbc.14117
12. Siddiqui S, Mateen S, Ahmad R, Moin S. A brief insight into the etiology, genetics, and immunology of polycystic ovarian syndrome (PCOS). J Assist Reprod Genet. 2022; 39(11):2439-73. doi:10.1007/s10815-022-02625-7 PMid:36190593 PMCid:PMC9723082
13. Cowan S, Lim S, Alycia C, Pirotta S, Thomson R, Gibson-Helm M, et al. Lifestyle management in polycystic ovary syndrome - beyond diet and physical activity. BMC Endocr Disord. 2023; 23 (1):14. doi:10.1186/s12902-022-01208-y PMid:36647089 PMCid:PMC9841505
14. Escobar-Morreale HF. Polycystic ovary syndrome: definition, aetiology, diagnosis and treatment. Nat Rev Endocrinol. 2018;14(5):270-84. doi:10.1038/nrendo.2018.24 PMid:29569621
15. Ortiz-Flores AE, Luque-Ramírez M, Escobar-Morreale HF. Polycystic ovary syndrome in adult women. Med Clin (Barc). 2019; 152(11): 450-7. doi:10.1016/j.medcli.2018.11.019 PMid:30616916
16. Radosh L. Drug treatments for polycystic ovary syndrome. Am Fam Physician. 2009; 79(8): 671-6.
17. Al-Thuwaynee S, Swadi AAJ. Comparing efficacy and safety of stair step protocols for clomiphene citrate and letrozole in ovulation induction for women with polycystic ovary syndrome (PCOS): a randomized controlled clinical trial. J Med Life. 2023; 16(5):725-30. doi:10.25122/jml-2023-0069 PMid:37520487 PMCid:PMC10375350
18. Rababa'h AM, Matani BR, Yehya A. An update of polycystic ovary syndrome: causes and therapeutics options. Heliyon. 2022; 8(10):e11010. doi:10.1016/j.heliyon.2022.e11010 PMid:36267367 PMCid:PMC9576888
19. Mbi Feh MK, Patel P, Wadhwa R. Clomiphene. StatPearls. Treasure Island (FL): StatPearls Publishing Copyright © 2024, StatPearls Publishing LLC.; 2024.
20. Wheeler KM, Sharma D, Kavoussi PK, Smith RP, Costabile R. Clomiphene Citrate for the Treatment of Hypogonadism. Sex Med Rev. 2019; 7(2):272-6. doi:10.1016/j.sxmr.2018.10.001 PMid:30522888
21. Sirotkin AV, Harrath AH. Phytoestrogens and their effects. Eur J Pharmacol. 2014; 741:230-6. doi:10.1016/j.ejphar.2014.07.057 PMid:25160742
22. Canivenc-Lavier MC, Bennetau-Pelissero C. Phytoestrogens and health effects. Nutrients. 2023; 15(2): 317. doi:10.3390/nu15020317 PMid:36678189 PMCid:PMC9864699
23. Lethaby A, Marjoribanks J, Kronenberg F, Roberts H, Eden J, Brown J. Phytoestrogens for menopausal vasomotor symptoms. Cochrane Database Syst Rev. 2013; 2013(12): Cd001395. doi:10.1002/14651858.CD001395.pub4
24. Patra S, Gorai S, Pal S, Ghosh K, Pradhan S, Chakrabarti S. A review on phytoestrogens: Current status and future direction. Phytother Res. 2023; 37(7): 3097-120. doi:10.1002/ptr.7861 PMid:37246823
25. Nasimi Doost Azgomi R, Moini Jazani A, Karimi A, Pourreza S. Potential roles of genistein in polycystic ovary syndrome: A comprehensive systematic review. Eur J Pharmacol. 2022; 933:175275. doi:10.1016/j.ejphar.2022.175275 PMid:36108737
26. Dixon RA. Phytoestrogens. Annu Rev Plant Biol. 2004; 55:225-61. doi:10.1146/annurev.arplant.55.031903.141729 PMid:15377220
27. Haudum C, Lindheim L, Ascani A, Trummer C, Horvath A, Münzker J, Obermayer-Pietsch B. Impact of short-term isoflavone intervention in polycystic ovary syndrome (PCOS) patients on microbiota composition and metagenomics. Nutrients. 2020;12(6):1622. doi:10.3390/nu12061622 PMid:32492805 PMCid:PMC7656308
28. Heidari Z, Ghasemi-Tehrani H, Fallahzadeh H, Nadjarzadeh A. The effects of flaxseed on weight loss in women with polycystic ovarian syndrome: a randomized controlled trial. Iran j diabetes obesity. 2020. doi:10.18502/ijdo.v11i2.2652
29. Li W, Hu H, Zou G, Ma Z, Liu J, Li F. Therapeutic effects of puerarin on polycystic ovary syndrome: A randomized trial in Chinese women. Medicine. 2021;100(21):e26049. doi:10.1097/MD.0000000000026049 PMid:34032731 PMCid:PMC8154455
30. Jang WY, Kim MY, Cho JY. Antioxidant, Anti-Inflammatory, Anti-Menopausal, and Anti-Cancer Effects of Lignans and Their Metabolites. Int J Mol Sci. 2022;23(24):15482. doi:10.3390/ijms232415482 PMid:36555124 PMCid:PMC9778916
31. Chen LR, Chen KH. Utilization of Isoflavones in Soybeans for Women with Menopausal Syndrome: An Overview. Int J Mol Sci. 2021; 22(6):3212. doi:10.3390/ijms22063212 PMid:33809928 PMCid:PMC8004126
32. Atiya F, Mohd Shariq K, Md. Wasi A. Therapeutic Potential of Equol: A Comprehensive Review. Current Pharmaceutical Design. 2020; 26 (45): 5837-43. doi:10.2174/1381612826999201117122915 PMid:33208061
33. Jamilian M, Asemi Z. The effects of soy isoflavones on metabolic status of patients with polycystic ovary syndrome. J Clin Endocrinol Metab. 2016;101(9):3386-94. doi:10.1210/jc.2016-1762 PMid:27490918
34. Maged AM, Deeb WS. Phytoestrogens as an alternative to estradiol in reversing the antiestrogenic effect of clomid on endometrium in ovulation induction in cases of PCO. Uterus Ovary. 2015; 2:1-5.
35. Mirmasoumi G, Fazilati M, Foroozanfard F, Vahedpoor Z, Mahmoodi S, Taghizadeh M, et al. The effects of flaxseed oil omega-3 fatty acids supplementation on metabolic status of patients with polycystic ovary syndrome: a randomized, double-blind, placebo-controlled trial. Experimental Clin Endocrinol Diabetes. 2018; 126(04):222-8. doi:10.1055/s-0043-119751
36. Rezvan N, Moini A, Gorgani-Firuzjaee S, Hosseinzadeh-Attar MJ. Oral quercetin supplementation enhances adiponectin receptor transcript expression in polycystic ovary syndrome patients: a randomized placebo-controlled double-blind clinical trial. Cell J (Yakhteh). 2017; 19(4):627.
37. Shahin AY, Mohammed SA. Adding the phytoestrogen Cimicifugae Racemosae to clomiphene induction cycles with timed intercourse in polycystic ovary syndrome improves cycle outcomes and pregnancy rates-a randomized trial. Gynecological Endocrinol. 2014;30(7):505-10. doi:10.3109/09513590.2014.895983 PMid:24592984
38. Farzana F, Sulaiman A, Ruckmani A, Vijayalakshmi K, Karunya Lakshmi G, Shri Ranjini S. Effects of flax seeds supplementation in polycystic ovarian syndrome. Int J Pharm Sci Rev Res. 2015; 31(1): 113-9.
39. Forouhari S, Shayan A, Heidari Z, Tavana Z, Salehi M, Sayadi M. The effect of soya on some hormone levels in women with polycystic ovary syndrome (balance diet): a cross over randomized clinical trial. 2013.
40. Khani B, Mehrabian F, Khalesi E, Eshraghi A. Effect of soy phytoestrogen on metabolic and hormonal disturbance of women with polycystic ovary syndrome. J Res Med Sci. 2011; 16(3): 297.
41. Pourhoseini SA, Mahmoudinia M, Najafi MN, Kamyabi F. The effect of phytoestrogens (Cimicifuga racemosa) in combination with clomiphene in ovulation induction in women with polycystic ovarian syndrome: A clinical trial study. Avicenna J Phytomed. 2022;12(1):8.
42. Artini PG, Di Berardino OM, Simi G, Papini F, Ruggiero M, Monteleone P, Cela V. Best methods for identification and treatment of PCOS. Minerva Ginecol. 2010;62(1):33-48.
43. Mohapatra S, Iqubal A, Ansari MJ, Jan B, Zahiruddin S, Mirza MA, et al. Benefits of Black Cohosh (Cimicifuga racemosa) for Women Health: An Up-Close and In-Depth Review. Pharmaceuticals (Basel). 2022;15(3). doi:10.3390/ph15030278 PMid:35337076 PMCid:PMC8953734
44. Palacio J, Iborra A, Ulcova-Gallova Z, Badia R, Martinez P. The presence of antibodies to oxidative modified proteins in serum from polycystic ovary syndrome patients. Clin Exp Immunol. 2006; 144(2): 217-22. doi:10.1111/j.1365-2249.2006.03061.x PMid:16634794 PMCid:PMC1809652
45. Sepilian V, Nagamani M. Effects of rosiglitazone in obese women with polycystic ovary syndrome and severe insulin resistance. J Clin Endocrinol Metab. 2005;90(1):60-5. doi:10.1210/jc.2004-1376 PMid:15483106
46. Fauser BC. Follicular development and oocyte maturation in hypogonadotrophic women employing recombinant follicle-stimulating hormone: the role of oestradiol. Hum Reprod Update. 1997; 3(2): 101-8. doi:10.1093/humupd/3.2.101 PMid:9286734
47. Williams RM, Ong KK, Dunger DB. Polycystic ovarian syndrome during puberty and adolescence. Mol Cell Endocrinol. 2013;373(1-2):61-7. doi:10.1016/j.mce.2013.01.005 PMid:23384539
48. Jansen R, Mortimer D, World Congress on In Vitro F, Human Reproductive Genetics S, World Congress on In Vitro F, Human Reproductive G. Towards reproductive certainty fertility and genetics beyond 1999 ; the plenary proceedings of the 11th World Congress on In Vitro Fertilization Human Reproductive Genetics. New York [u.a.]: Parthenon Pub. Group; 1999.
49. Farzana K, Sulaiman A, Ruckmani A, Kandasamy V, Lakshmi G, Sundar S, Duraivel M. Effects of flax seeds supplementation in polycystic ovarian syndrome. Int J Pharmaceutical Sci Rev Res. 2015; 31: 113-9.
50. Jamilian M, Sahebkashaf R. Metabolic response to soy supplementation in women with polycystic ovary syndrome. J Arak Uni Med Sci. 2017;20:14-23.
51. Khorshidi M, Moini A, Alipoor E, Rezvan N, Gorgani‐Firuzjaee S, Yaseri M, Hosseinzadeh‐Attar MJ. The effects of quercetin supplementation on metabolic and hormonal parameters as well as plasma concentration and gene expression of resistin in overweight or obese women with polycystic ovary syndrome. Phytotherapy Res. 2018; 32(11): 2282-9. doi:10.1002/ptr.6166 PMid:30062709
52. Haidari F, Banaei-Jahromi N, Zakerkish M, Ahmadi K. The effects of flaxseed supplementation on metabolic status in women with polycystic ovary syndrome: a randomized open-labeled controlled clinical trial. Nutr J. 2020;19(1):8. doi:10.1186/s12937-020-0524-5 PMid:31980022 PMCid:PMC6982376
53. Chandrasekar B, Fernandes G. Decreased pro-inflammatory cytokines and increased antioxidant enzyme gene expression by omega-3 lipids in murine lupus nephritis. Biochem Biophys Res Commun. 1994;200(2):893-8. doi:10.1006/bbrc.1994.1534 PMid:8179624
54. Westcott ND, Muir AD. Flax seed lignan in disease prevention and health promotion. Phytochemistry Reviews. 2003;2(3):401-17. doi:10.1023/B:PHYT.0000046174.97809.b6
55. Caughey GE, Mantzioris E, Gibson RA, Cleland LG, James MJ. The effect on human tumor necrosis factor alpha and interleukin 1 beta production of diets enriched in n-3 fatty acids from vegetable oil or fish oil. Am J Clin Nutr. 1996; 63(1):116-22. doi:10.1093/ajcn/63.1.116 PMid:8604658
56. Vaez S, Parivr K, Amidi F, Rudbari NH, Moini A, Amini N. Quercetin and polycystic ovary syndrome; inflammation, hormonal parameters and pregnancy outcome: A randomized clinical trial. Am J Reproductive Immunol. 2023;89(3): e13644. doi:10.1111/aji.13644 PMid:36317442
57. Kalyan S, Goshtesabi A, Sarray S, Joannou A, Almawi WY. Assessing C reactive protein/albumin ratio as a new biomarker for polycystic ovary syndrome: a case-control study of women from Bahraini medical clinics. BMJ Open. 2018; 8(10): e021860. doi:10.1136/bmjopen-2018-021860 PMid:30368447 PMCid:PMC6224721
58. Duleba AJ, Dokras A. Is PCOS an inflammatory process? Fertil Steril. 2012;97(1):7-12. doi:10.1016/j.fertnstert.2011.11.023 PMid:22192135 PMCid:PMC3245829
59. Kelly CC, Lyall H, Petrie JR, Gould GW, Connell JM, Sattar N. Low grade chronic inflammation in women with polycystic ovarian syndrome. J Clin Endocrinol Metab. 2001; 86(6): 2453-5. doi:10.1210/jcem.86.6.7580 PMid:11397838
60. Engin-Ustün Y, Ustün Y, Meydanli MM, Kafkasli A, Yetkin G. Are polycystic ovaries associated with cardiovascular disease risk as polycystic ovary syndrome? Gynecol Endocrinol. 2006; 22(6):324-8. doi:10.1080/09513590600630447 PMid:16785157
61. Cakal E, Ustun Y, Engin-Ustun Y, Ozkaya M, Kilinç M. Serum vaspin and C-reactive protein levels in women with polycystic ovaries and polycystic ovary syndrome. Gynecol Endocrinol. 2011; 27(7):491-5. doi:10.3109/09513590.2010.501874 PMid:20626239
62. Haidari F, Banaei-Jahromi N, Zakerkish M, Ahmadi K. The effects of flaxseed supplementation on metabolic status in women with polycystic ovary syndrome: a randomized open-labeled controlled clinical trial. Nutr J. 2020;19:1-11. doi:10.1186/s12937-020-0524-5 PMid:31980022 PMCid:PMC6982376
63. Hermansen K, Søndergaard M, Høie L, Carstensen M, Brock B. Beneficial effects of a soy-based dietary supplement on lipid levels and cardiovascular risk markers in type 2 diabetic subjects. Diabetes Care. 2001;24(2):228-33. doi:10.2337/diacare.24.2.228 PMid:11213870
64. Torres N, Torre-Villalvazo I, Tovar AR. Regulation of lipid metabolism by soy protein and its implication in diseases mediated by lipid disorders. J Nutr Biochem. 2006;17(6):365-73. doi:10.1016/j.jnutbio.2005.11.005 PMid:16481155
65. Romualdi D, Costantini B, Campagna G, Lanzone A, Guido M. Is there a role for soy isoflavones in the therapeutic approach to polycystic ovary syndrome? Results from a pilot study. Fertil Steril. 2008;90(5):1826-33. doi:10.1016/j.fertnstert.2007.09.020 PMid:18166189
66. Sclavo M. Cardiovascular risk factors and prevention in women: similarities and differences. Ital Heart J Suppl. 2001;2(2):125-41.
67. Castelli WP. The new pathophysiology of coronary artery disease. Am J Cardiol. 1998; 82 (10b):60t-5t. doi:10.1016/S0002-9149(98)00729-2 PMid:9860378
68. Swarup S, Ahmed I, Grigorova Y, Zeltser R. Metabolic Syndrome. StatPearls. Treasure Island (FL): StatPearls Publishing Copyright © 2025, StatPearls Publishing LLC.; 2025.
69. Ibrügger S, Kristensen M, Mikkelsen MS, Astrup A. Flaxseed dietary fiber supplements for suppression of appetite and food intake. Appetite. 2012; 58(2):490-5. doi:10.1016/j.appet.2011.12.024 PMid:22245724
70. Rezvan N, Moini A, Janani L, Mohammad K, Saedisomeolia A, Nourbakhsh M, et al. Effects of quercetin on adiponectin-mediated insulin sensitivity in polycystic ovary syndrome: a randomized placebo-controlled double-blind clinical trial. Hormone Metab Res. 2017; 49(02): 115-21. doi:10.1055/s-0042-118705 PMid:27824398
71. Tao T, Xu B, Liu W. Ovarian HMW adiponectin is associated with folliculogenesis in women with polycystic ovary syndrome. Reprod Biol Endocrinol. 2013; 11: 99. doi:10.1186/1477-7827-11-99 PMid:24144083 PMCid:PMC4015744
72. 72. Toulis KA, Goulis DG, Farmakiotis D, Georgopoulos NA, Katsikis I, Tarlatzis BC, et al. Adiponectin levels in women with polycystic ovary syndrome: a systematic review and a meta-analysis. Hum Reprod Update. 2009;15(3):297-307. doi:10.1093/humupd/dmp006 PMid:19261627
73. Wickham EP, Cheang KI, Clore JN, Baillargeon JP, Nestler JE. Total and high-molecular weight adiponectin in women with the polycystic ovary syndrome. Metabolism. 2011;60(3):366-72. doi:10.1016/j.metabol.2010.02.019 PMid:20359725 PMCid:PMC2946975
74. Gorgani-Firuzjaee S, Khatami S, Adeli K, Meshkani R. SH2 domain-containing inositol 5-phosphatase (SHIP2) regulates de-novo lipogenesis and secretion of apoB100 containing lipoproteins in HepG2 cells. Biochem Biophys Res Commun. 2015;464(4):1028-33. doi:10.1016/j.bbrc.2015.07.059 PMid:26188518
75. Rezvan N, Moini A, Janani L, Mohammad K, Saedisomeolia A, Nourbakhsh M, et al. Effects of Quercetin on Adiponectin-Mediated Insulin Sensitivity in Polycystic Ovary Syndrome: A Randomized Placebo-Controlled Double-Blind Clinical Trial. Horm Metab Res. 2017; 49(2): 115-21. doi:10.1055/s-0042-118705 PMid:27824398
76. Khorshidi M, Moini A, Alipoor E, Rezvan N, Gorgani-Firuzjaee S, Yaseri M, Hosseinzadeh-Attar MJ. The effects of quercetin supplementation on metabolic and hormonal parameters as well as plasma concentration and gene expression of resistin in overweight or obese women with polycystic ovary syndrome. Phytother Res. 2018; 32 (11):2282-9. doi:10.1002/ptr.6166 PMid:30062709
77. Lee KW, Kim YJ, Kim DO, Lee HJ, Lee CY. Major phenolics in apple and their contribution to the total antioxidant capacity. J Agric Food Chem. 2003;51(22):6516-20. doi:10.1021/jf034475w PMid:14558772
78. Muniyappa R, Lee S, Chen H, Quon MJ. Current approaches for assessing insulin sensitivity and resistance in vivo: advantages, limitations, and appropriate usage. Am J Physiol Endocrinol Metab. 2008; 294(1): E15-26. doi:10.1152/ajpendo.00645.2007 PMid:17957034
79. Nestler JE, Jakubowicz DJ. Decreases in ovarian cytochrome P450c17 alpha activity and serum free testosterone after reduction of insulin secretion in polycystic ovary syndrome. N Engl J Med. 1996; 335(9): 617-23. doi:10.1056/NEJM199608293350902 PMid:8687515
80. Ander BP, Weber AR, Rampersad PP, Gilchrist JS, Pierce GN, Lukas A. Dietary flaxseed protects against ventricular fibrillation induced by ischemia-reperfusion in normal and hypercholesterolemic Rabbits. J Nutr. 2004;134(12):3250-6. doi:10.1093/jn/134.12.3250 PMid:15570021
81. Groth SW. Adiponectin and polycystic ovary syndrome. Biol Res Nurs. 2010;12(1):62-72. doi:10.1177/1099800410371824 PMid:20498127 PMCid:PMC3646519
82. Murri M, Luque-Ramírez M, Insenser M, Ojeda-Ojeda M, Escobar-Morreale HF. Circulating markers of oxidative stress and polycystic ovary syndrome (PCOS): a systematic review and meta-analysis. Hum Reprod Update. 2013; 19(3):268-88. doi:10.1093/humupd/dms059 PMid:23303572
83. Murri M, Luque-Ramírez M, Insenser M, Ojeda-Ojeda M, Escobar-Morreale HF. Circulating markers of oxidative stress and polycystic ovary syndrome (PCOS): a systematic review and meta-analysis. Human reproduction update. 2013; 19(3): 268-88. doi:10.1093/humupd/dms059 PMid:23303572
84. Jeelani H, Ganie M, Parvez T, Fatima Q, Kawa I, Rashid F. Oxidative stress biomarkers in polycystic ovary syndrome (PCOS). PMJ. 2017;2:30-8.
85. Wiegand H, Wagner AE, Boesch-Saadatmandi C, Kruse H-P, Kulling S, Rimbach G. Effect of dietary genistein on Phase II and antioxidant enzymes in rat liver. Cancer genomics & proteomics. 2009;6(2):85-92.
86. Nourooz-Zadeh J, Eftekhar E. Physiological importance of glutathione in health and disease. J Birjand Univ Med Sci. 2007;14(3):9-15.
87. Saremi A, Norouzi R, Parastesh M, Yousefvand Z, Tahmasebi S. The effect of 8 weeks of endurance training on the antioxidant system of glutathione and malondialdehyde in rats with rheumatoid arthritis. Daneshvar Med. 2022; 30(2):83-93.
88. Hwang J, Wang J, Morazzoni P, Hodis HN, Sevanian A. The phytoestrogen equol increases nitric oxide availability by inhibiting superoxide production: an antioxidant mechanism for cell-mediated LDL modification. Free Radic Biol Med. 2003; 34(10):1271-82. doi:10.1016/S0891-5849(03)00104-7 PMid:12726915
89. Kho ZY, Lal SK. The Human Gut Microbiome - A Potential Controller of Wellness and Disease. Front Microbiol. 2018;9:1835. doi:10.3389/fmicb.2018.01835 PMid:30154767 PMCid:PMC6102370
90. Thursby E, Juge N. Introduction to the human gut microbiota. Biochem J. 2017;474(11):1823-36. doi:10.1042/BCJ20160510 PMid:28512250 PMCid:PMC5433529
91. Amabebe E, Anumba DOC. Female Gut and Genital Tract Microbiota-Induced Crosstalk and Differential Effects of Short-Chain Fatty Acids on Immune Sequelae. Front Immunol. 2020; 11:2184. doi:10.3389/fimmu.2020.02184 PMid:33013918 PMCid:PMC7511578
92. Pickard JM, Zeng MY, Caruso R, Núñez G. Gut microbiota: Role in pathogen colonization, immune responses, and inflammatory disease. Immunol Rev. 2017; 279(1):70-89. doi:10.1111/imr.12567 PMid:28856738 PMCid:PMC5657496
93. Lazar V, Ditu LM, Pircalabioru GG, Gheorghe I, Curutiu C, Holban AM, et al. Aspects of Gut Microbiota and Immune System Interactions in Infectious Diseases, Immunopathology, and Cancer. Front Immunol. 2018; 9:1830. doi:10.3389/fimmu.2018.01830 PMid:30158926 PMCid:PMC6104162
94. Giampaolino P, Foreste V, Di Filippo C, Gallo A, Mercorio A, Serafino P, et al. Microbiome and PCOS: State-of-Art and Future Aspects. Int J Mol Sci. 2021; 22(4). doi:10.3390/ijms22042048 PMid:33669557 PMCid:PMC7922491
95. Zhao X, Jiang Y, Xi H, Chen L, Feng X. Exploration of the Relationship Between Gut Microbiota and Polycystic Ovary Syndrome (PCOS): a Review. Geburtshilfe Frauenheilkd. 2020;80(2):161-71. doi:10.1055/a-1081-2036 PMid:32109968 PMCid:PMC7035130
96. He FF, Li YM. Role of gut microbiota in the development of insulin resistance and the mechanism underlying polycystic ovary syndrome: a review. J Ovarian Res. 2020;13 (1):73. doi:10.1186/s13048-020-00670-3 PMid:32552864 PMCid:PMC7301991
97. Gu Y, Zhou G, Zhou F, Li Y, Wu Q, He H, et al. Gut and Vaginal Microbiomes in PCOS: Implications for Women's Health. Front Endocrinol (Lausanne). 2022;13:808508. doi:10.3389/fendo.2022.808508 PMid:35282446 PMCid:PMC8905243
98. Graham ME, Herbert WG, Song SD, Raman HN, Zhu JE, Gonzalez PE, et al. Gut and vaginal microbiomes on steroids: implications for women's health. Trends Endocrinol Metab. 2021;32(8):554-65. doi:10.1016/j.tem.2021.04.014 PMid:34049772 PMCid:PMC8282721
99. Thackray VG. Sex, Microbes, and Polycystic Ovary Syndrome. Trends in Endocrinol Metabolism. 2019; 30(1):54-65. doi:10.1016/j.tem.2018.11.001 PMid:30503354 PMCid:PMC6309599
100. Rinninella E, Raoul P, Cintoni M, Franceschi F, Miggiano GAD, Gasbarrini A, Mele MC. What is the Healthy Gut Microbiota Composition? A Changing Ecosystem across Age, Environment, Diet, and Diseases. Microorganisms. 2019;7(1). doi:10.3390/microorganisms7010014 PMid:30634578 PMCid:PMC6351938
101. Giampaolino P, Foreste V, Di Filippo C, Gallo A, Mercorio A, Serafino P, et al. Microbiome and PCOS: State-of-Art and Future Aspects. Int J Mol Sci. 2021;22(4):2048. doi:10.3390/ijms22042048 PMid:33669557 PMCid:PMC7922491
102. Paolo C, Giorgia Z. Metabolic reprogramming as an emerging mechanism of resistance to endocrine therapies in prostate cancer. Cancer Drug Resistance. 2021;4(1):143-62.
103. Mukherjee AG, Wanjari UR, Kannampuzha S, Murali R, Namachivayam A, Ganesan R, et al. The Implication of Mechanistic Approaches and the Role of the Microbiome in Polycystic Ovary Syndrome (PCOS): A Review. Metabolites. 2023;13(1). doi:10.3390/metabo13010129 PMid:36677054 PMCid:PMC9863528
104. Zilaee M, Mansoori A, Ahmad HS, Mohaghegh SM, Asadi M, Hormoznejad R. The effects of soy isoflavones on total testosterone and follicle-stimulating hormone levels in women with polycystic ovary syndrome: a systematic review and meta-analysis. Eur J Contraception Reproductive Health Care. 2020; 25(4): 305-10. doi:10.1080/13625187.2020.1761956 PMid:32436742
105. Azgomi RND, Jazani AM, Karimi A, Pourreza S. Potential roles of genistein in polycystic ovary syndrome: A comprehensive systematic review. Eur J Pharmacol. 2022;933:175275. doi:10.1016/j.ejphar.2022.175275 PMid:36108737
106. Najafi MN, Kasaian J, Kovatsi L, Leon G, Solout EK, Hashemzaei M, et al. Phytoestrogens and the polycystic ovary syndrome: a systematic review of clinical evidence and laboratory findings. Farmacia. 2018;66(2):223-9.
107. Kim IS. Current perspectives on the beneficial effects of soybean isoflavones and their metabolites for humans. Antioxidants. 2021;10(7):1064.doi:10.3390/antiox10071064 PMid:34209224 PMCid:PMC8301030
108. Pourteymour Fard Tabrizi F, Hajizadeh-Sharafabad F, Vaezi M, Jafari-Vayghan H, Alizadeh M, Maleki V. Quercetin and polycystic ovary syndrome, current evidence and future directions: a systematic review. J Ovarian Res. 2020;13:1-10. doi:10.1186/s13048-020-0616-z PMid:32005271 PMCid:PMC6993490
109. Hara N, Takizawa I, Isahaya E, Nishiyama T, Hoshii T, Ishizaki F, et al, editors. Insulin-like growth factor-1 is associated with regulation of the luteinizing hormone production in men receiving androgen deprivation therapy with gonadotropin-releasing hormone analogues for localized prostate cancer. Urologic Oncology: Seminars and Original Investigations; 2012: Elsevier. doi:10.1016/j.urolonc.2010.11.001 PMid:21458314
110. Lu M, Tang Q, Olefsky JM, Mellon PL, Webster NJ. Adiponectin activates adenosine monophosphate-activated protein kinase and decreases luteinizing hormone secretion in LβT2 gonadotropes. Mol Endocrinol. 2008;22(3):760-71. doi:10.1210/me.2007-0330 PMid:18006641 PMCid:PMC2262174
111. Mukherjee S, Maitra A. Molecular & genetic factors contributing to insulin resistance in polycystic ovary syndrome. Indian J Med Res. 2010;131(6):743-60.
112. Zhao H, Xing C, Zhang J, He B. Comparative efficacy of oral insulin sensitizers metformin, thiazolidinediones, inositol, and berberine in improving endocrine and metabolic profiles in women with PCOS: a network meta-analysis. Reproductive Health. 2021;18:1-12. doi:10.1186/s12978-021-01207-7 PMid:34407851 PMCid:PMC8371888
113. Neisy A, Zal F, Seghatoleslam A, Alaee S. Amelioration by quercetin of insulin resistance and uterine GLUT4 and ERα gene expression in rats with polycystic ovary syndrome (PCOS). Reproduction, Fertility and Development. 2019; 31(2):315-23. doi:10.1071/RD18222 PMid:30103849
114. Joshi M, Shankar R, Pathak K, Yadav R. Polycystic ovarian syndrome: A review covering phytoconstituents for its outstrip management. Pharmacological Research-Modern Chinese Medicine. 2021;1:100011. doi:10.1016/j.prmcm.2021.100011
115. Rajaei S. Antioxidant effect of genistein on ovarian tissue morphology, oxidant and antioxidant activity in rats with induced polycystic ovary syndrome. Int J Reprod Biomed. 2019; 17(1):11. doi:10.18502/ijrm.v17i1.3816 PMid:31435584 PMCid:PMC6652161
ارسال پیام به نویسنده مسئول

ارسال نظر درباره این مقاله
نام کاربری یا پست الکترونیک شما:

CAPTCHA



XML   English Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Akbarzadeh Morshedi M, Mohammadi M, Aminianfar A. The effects of phytoestrogen consumption on polycystic ovary syndrome: A systematic review. Feyz Med Sci J 2025; 29 (1) :109-122
URL: http://feyz.kaums.ac.ir/article-1-5307-fa.html

اکبرزاده مرشدی مینو، محمدی محمد، امینیان فر آزاده. اثرات مصرف فیتواستروژن‌ها بر سندرم تخمدان پلی‌کیستیک: یک مطالعه مروری نظام‌مند. مجله علوم پزشکی فيض. 1404; 29 (1) :109-122

URL: http://feyz.kaums.ac.ir/article-1-5307-fa.html



Creative Commons License
This open access journal is licensed under a Creative Commons Attribution-NonCommercial ۴.۰ International License. CC BY-NC ۴. Design and publishing by Kashan University of Medical Sciences.
Copyright ۲۰۲۳© Feyz Medical Sciences Journal. All rights reserved.
دوره 29، شماره 1 - ( دوماه نامه 1404 ) برگشت به فهرست نسخه ها
مجله علوم پزشکی فیض Feyz Medical Sciences Journal
Persian site map - English site map - Created in 0.07 seconds with 46 queries by YEKTAWEB 4710