1. Islam MS, Islam MA, Rahman MM, Islam K, Islam MM, Kamal MM, Islam MN. Presence of Brucella spp. in milk and dairy products: a comprehensive review and its perspectives. J Food Quality. 2023; 2023(1): 2932883. doi:10.1155/2023/2932883 2. Guo X, Zeng H, Li M, Xiao Y, Gu G, Song Z, et al. The mechanism of chronic intracellular infection with Brucella spp. Front Cell Infect Microbiol. 2023; 13: 1129172. doi:10.3389/fcimb.2023.1129172 PMid:37143745 PMCid:PMC10151771 3. Tian T, Zhu Y, Shi J, Shang K, Yin Z, Shi H, et al. The development of a human Brucella mucosal vaccine: What should be considered?. Life Sci. 2024; 122986. doi:10.1016/j.lfs.2024.122986 PMid:39151885 4. Beig M, Moradkasani S, Goodarzi F, Sholeh M. Prevalence of brucella melitensis and Brucella abortus fluoroquinolones resistant isolates: a systematic review and meta-analysis. Vector-Borne Zoonotic Dis. 2024; 24(1): 1-9. doi:10.1089/vbz.2023.0063 PMid:37862228 5. Zavattieri L, Muñoz González F, Ferrero MC, Baldi PC. Immune responses potentially involved in the gestational complications of Brucella infection. Pathogens. 2023; 12(12):1450. doi:10.3390/pathogens12121450 PMid:38133333 PMCid:PMC10747693 6. Naseer A, Mo S, Olsen SC, McCluskey B. Brucella melitensis Vaccines: A Systematic Review. Agriculture. 2023; 13(11): 2137. doi:10.3390/agriculture13112137 7. Bulashev A, Eskendirova S. Brucellosis detection and the role of Brucella spp. cell wall proteins. Veterinary World. 2023; 16(7): 1390. doi:10.14202/vetworld.2023.1390-1399 PMid:37621538 PMCid:PMC10446727 8. Jezi FM, Razavi S, Mirnejad R, Zamani K. Immunogenic and protective antigens of Brucella as vaccine candidates. Comp Immunol Microbiol Infect Dis. 2019; 65: 29-36. doi:10.1016/j.cimid.2019.03.015 PMid:31300122 9. Razavi S, Mirnejad R, Zamani K. Immunogenic and protective antigens of Brucella as vaccine candidates. Comp Immunol Microbiol Infect Dis. 2019; 65:2 9-36. doi:10.1016/j.cimid.2019.03.015 PMid:31300122 10. Ali A, Waris A, Khan MA, Asim M, Khan AU, Khan S, et al. Recent advancement, immune responses, and mechanism of action of various vaccines against intracellular bacterial infections. Life Sci. 2023;314: 121332. doi:10.1016/j.lfs.2022.121332 PMid:36584914 11. Wang X, Gao X, Wang L, Lin J, Liu Y. Advances of Nanotechnology Toward Vaccine Development Against Animal Infectious Diseases. Adv Funct Mater. 2023; 33(46): 2305061. doi:10.1002/adfm.202305061 12. Osterloh A. Vaccination against bacterial infections: challenges, progress, and new approaches with a focus on intracellular bacteria. Vaccines. 2022; 10(5): 751. doi:10.3390/vaccines10050751 PMid:35632507 PMCid:PMC9144739 13. Jin Z, Dong YT, Liu S, Liu J, Qiu XR, Zhang Y, et al. Potential of polyethyleneimine as an adjuvant to prepare long-term and potent antifungal nanovaccine. Front Immunol. 2022; 13: 843684. doi:10.3389/fimmu.2022.843684 PMid:35651617 PMCid:PMC9149211 14. Sharif F, Nazari R, Fasihi-Ramandi M, Taheri R A, Zargar M. Preparation of niosomal nanostructure containing Brucella trivalent immunogen as a vaccine candidate. Feyz Med Sci J. 2023; 27(1): 21-30 15. Karevan G, Ahmadi K, Taheri RA, Fasihi-Ramandi M. Immunogenicity of glycine nanoparticles containing a chimeric antigen as Brucella vaccine candidate. Clin. Exp. Vaccine Res. 2021;10(1):35. doi:10.7774/cevr.2021.10.1.35 PMid:33628752 PMCid:PMC7892938 16. Nazifi N. Design of repeated structure of epitopic region of Omp31 antigen of Brucella melitensis along with interleukin 2 adjuvant and immunogenicity of this structure in mice. Doctoral thesis, 2017. Ferdowsi University of Mashhad. 17. Ghasemi A, Ranjbar R, Amani J. In silico analysis of chimeric TF, Omp31 and BP26 fragments of Brucella melitensis for development of a multi subunit vaccine candidate. Iran J Basic Med Sci. 2014; 17(3):172. 18. Díaz AG, Clausse M, Paolicchi FA, Fiorentino MA, Ghersi G, Zylberman V, et al. Immune response and serum bactericidal activity against Brucella ovis elicited using a short immunization schedule with the polymeric antigen BLSOmp31 in rams. Vet Immunol Immunopathol. 2013; 154(1-2): 36-41. doi:10.1016/j.vetimm.2013.04.003 PMid:23643287 19. Abkar M, Alamian S, Sattarahmady N. A comparison between adjuvant and delivering functions of calcium phosphate, aluminum hydroxide and chitosan nanoparticles, using a model protein of Brucella melitensis Omp31. Immunol Lett. 2019; 207: 28-35. doi:10.1016/j.imlet.2019.01.010 PMid:30707922 20. Gupta VK, Rout PK, Vihan VS. Induction of immune response in mice with a DNA vaccine encoding outer membrane protein (omp31) of Brucella melitensis 16M. Res Vet Sci. 2007; 82(3): 305-13 doi:10.1016/j.rvsc.2006.07.014 PMid:17014873 21. Ahmed IM, Khairani-Bejo S, Hassan L, Bahaman AR, Omar AR. Serological diagnostic potential of recombinant outer membrane proteins (rOMPs) from Brucella melitensis in mouse model using indirect enzyme-linked immunosorbent assay. BMC. 2015; 11: 1-0. doi:10.1186/s12917-015-0587-2 PMid:26530141 PMCid:PMC4630882 22. Win KY, Feng SS. Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs. Biomaterials. 2005; 26: 2713-22. doi:10.1016/j.biomaterials.2004.07.050 PMid:15585275 23. Yamamoto Y, Nagasaki Y, Kato Y, Sugiyama Y, Kataoka K. Long-circulating poly (ethylene glycol)--poly (d, l-lactide) block copolymer micelles with modulated surface charge. J Control Release. 2001; 77: 27-38. doi:10.1016/S0168-3659(01)00451-5 PMid:11689257 24. He C, Hu Y, Yin L, Tang C, Yin C. Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. J Biomaterials. 2010 1;31(13):3657-66. doi:10.1016/j.biomaterials.2010.01.065 PMid:20138662 25. Wang B, Dong Y, Cen Y, Chen S, Wen X, Liu K, et al. PEI‐PLGA nanoparticles significantly enhanced the immunogenicity of IsdB137‐361 proteins from Staphylococcus aureus. Immun Inflamm Dis. 2023; 11(7): e928 doi:10.1002/iid3.928 PMid:37506158 PMCid:PMC10336661 26. Vila A, Gill H, Mccallion O, Alonso MJ. Transport of Pla -peg particles across the nasal mucosa effect of particle size and peg coating density. J Cont Rel. 2004; 98: 231-44. doi:10.1016/j.jconrel.2004.04.026 PMid:15262415 27. Ghasemi R, Abdollahi M, Zadeh EE, Khodabakhshi K, Badeli A, Bagheri H, et al. Mpeg -pla and pla -peg -pla nanoparticles as new carriers for delivery of recombinant human growth hormone. Sci Rep. 2018; 8: 9854. doi:10.1038/s41598-018-28092-8 PMid:29959339 PMCid:PMC6026132
|