[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Indexing Sources::
Guide for Authors::
Online Submission::
Ethics::
Articles archive::
For Reviewers::
Contact us::
AI::
::
Basic and Clinical Biochemistry and Nutrition
..
DOAJ
..
CINAHL
..
EBSCO
..
IMEMR
..
ISC
..
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
enamad
..
:: Volume 28, Issue 5 (Bimonthly 2024) ::
Feyz Med Sci J 2024, 28(5): 456-462 Back to browse issues page
Effect of aerobic exercise and Melissa officinalis extract on the expression of p53, p21, and caspase-3 genes in the hippocampus of male rats with induced Alzheimer's disease
Mahnaz Navardi , Ramin Shabani * , Shahram Gholamrezaoo darsara
Department of Physical Education and Sport Sciences, Rasht Branch, Islamic Azad University, Rasht, Iran & Department of Physical Education and Sport Sciences, Rasht Branch, Islamic Azad University, Rasht, Iran , dr.ramin.shabani@gmail.com
Abstract:   (684 Views)
Background and Aim: Alzheimer's disease (AD) is a major health challenge in the world today. The present study aimed to determine the effect of aerobic exercise and Melissa officinalis extract on the expression of p53, p21, and caspase-3 genes in male rats with AD.
Methods: In this experimental study, 48 rats were randomly divided into 6 groups: control, AD, control + aerobic exercise, AD + aerobic exercise, AD + aerobic exercise + extract, and AD + extract. The AD model was induced by injecting amyloid beta 42-1 into the hippocampus. Aerobic exercise was performed for 8 weeks. Melissa officinalis extract was dissolved in 2 ml of distilled water at a dose of 100 mg/kg body weight and gavaged to rats for 8 weeks. Real-Time PCR was used to determine the expression levels of p53, p21, and caspase-3 genes.
Results: After 8 weeks of aerobic exercise combined with Melissa officinalis extract, the expression of the p21 gene in the intervention groups significantly increased compared to the AD group (P<0.05). Moreover, p53 and caspase-3 were significantly decreased in the AD + aerobic exercise and AD + aerobic exercise + extract groups compared to the AD group (P<0.05).
Conclusion: It seems that aerobic exercise combined with Melissa officinalis extract can inhibit AD by suppressing apoptosis, however, further studies in this field are needed.
Keywords: Alzheimer's disease, Aerobic exercise, Melissa officinalis, p53, Caspase-3
Full-Text [PDF 482 kb]   (493 Downloads)    
Type of Study: Research | Subject: medicine, paraclinic
Received: 2024/10/16 | Revised: 2024/12/25 | Accepted: 2024/12/1 | Published: 2024/12/23
References
1. Akhondzadeh S, Noroozian M, Mohammadi M, Ohadinia S, Jamshidi AH, Khani M. Melissa officinalis extract in the treatment of patients with mild to moderate Alzheimer's disease: a double-blind, randomized, placebo-controlled trial. J Neurol Neurosurg Psychiatry. 2003;74(7):863-6. doi:10.1136/jnnp.74.7.863 PMid:12810768 PMCid:PMC1738567
2. Anand R, Gill KD, Mahdi AA. Therapeutics of Alzheimer's disease: past, present, and future. Neuropharmacology. 2014;76:27-50. doi:10.1016/j.neuropharm.2013.07.004 PMid:23891641
3. Asghari RM, Barari A, Abdi A, Hasrak K. The review of short-term concurrent training on expression of p53 and p21 tumor suppressor genes in men with prostate cancer.
4. Aydın E, Türkez H, Keleş MS. The effect of carvacrol on healthy neurons and N2a cancer cells: some biochemical, anticancerogenicity and genotoxicity studies. Cytotechnology. 2014;66:149-57. doi:10.1007/s10616-013-9547-5 PMid:23553016 PMCid:PMC3886536
5. Bazyar F, Shabani R, Elmiyeh A. The effects of endurance training and saffron extract on the expression of Bax, Bcl-2, and Caspase-3 genes in the hippocampal tissue of Alzheimer's male rats. J Jiroft Univ Med Sci. 2023;9(4):1151-9.
6. Blennow K, de Leon MJ, Zetterberg H. Alzheimer's disease. Lancet. 2006;368(9533):387-403. doi:10.1016/S0140-6736(06)69113-7 PMid:16876668
7. Breitner JC, Gau BA, Welsh KA, Plassman BL, McDonald WM, Helms MJ, Anthony JC. Inverse association of anti-inflammatory treatments and Alzheimer's disease: initial results of a co-twin control study. Neurology. 1994;44(2):227 doi:10.1212/WNL.44.2.227 PMid:8309563
8. Butterfield DA. β-Amyloid-associated free radical oxidative stress and neurotoxicity: implications for Alzheimer's disease. Chem Res Toxicol. 1997;10(5):495-506. doi:10.1021/tx960130e PMid:9168246
9. Cioffi F, Adam RH, Broersen K. Molecular mechanisms and genetics of oxidative stress in Alzheimer's disease. J Alzheimers Dis. 2019;72(4): 981-1017 doi:10.3233/JAD-190863 PMid:31744008 PMCid:PMC6971833
10. Clementi F, Fornasari D, Gotti C. Neuronal nicotinic receptors, important new players in brain function. Eur J Pharmacol. 2000;393(1-3):3-10. doi:10.1016/S0014-2999(00)00066-2 PMid:10770992
11. Dall'Igna OP, Fett P, Gomes MW, Souza DO, Cunha RA, Lara DR. Caffeine and adenosine A2a receptor antagonists prevent β-amyloid (25-35)-induced cognitive deficits in mice. Exp Neurol. 2007;203(1):241-5. doi:10.1016/j.expneurol.2006.08.008 PMid:17007839
12. Dastmalchi K, Dorman HD, Oinonen PP, Darwis Y, Laakso I, Hiltunen R. Chemical composition and in vitro antioxidative activity of a lemon balm (Melissa officinalis L.) extract. LWT Food Sci Technol. 2008;41(3):391-400. doi:10.1016/j.lwt.2007.03.007
13. Feng D, Wang MY, Liu J, Zhang HX, Chen X, Zhang RL, et al. Survival efficacy of MDS/AML patients with TP53 abnormal received allogeneic hematopoietic stem cell transplantation. Zhonghua Xue Ye Xue Za Zhi. 2023;44(3):222-9.
14. Ge YS, Teng WY, Zhang CD. Protective effect of cyclophilin A against Alzheimer's amyloid beta-peptide (25-35)-induced oxidative stress in PC12 cells. Chin Med J. 2009;122(6):716-24.
15. Ghasemi PA, Gorgij A, Rahimmalek M, Hamedi B. Phytochemical response of hyssop (Hyssopus officinalis L.) to foliar application of jasmonic acid.
16. Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science. 2002;297(5580):353-6. doi:10.1126/science.1072994 PMid:12130773
17. Jones GM, Sahakian BJ, Levy R, Warburton DM, Gray JA. Effects of acute subcutaneous nicotine on attention, information processing and short-term memory in Alzheimer's disease. Psychopharmacology (Berl). 1992;108:485-94. doi:10.1007/BF02247426 PMid:1410164
18. Ju Y, Tam KY. Pathological mechanisms and therapeutic strategies for Alzheimer's disease. Neural Regen Res. 2022;17(3):543-9. doi:10.4103/1673-5374.320970 PMid:34380884 PMCid:PMC8504384
19. Kihara T, Shimohama S, Sawada H, Kimura J, Kume T, Kochiyama H, Maeda T, Akaike A. Nicotinic receptor stimulation protects neurons against β-amyloid toxicity. Ann Neurol. 1997;42(2): 159-63. doi:10.1002/ana.410420205 PMid:9266724
20. Koo JH, Kang EB, Oh YS, Yang DS, Cho JY. Treadmill exercise decreases amyloid-β burden possibly via activation of SIRT-1 signaling in a mouse model of Alzheimer's disease. Exp Neurol. 2017;288:142-52. doi:10.1016/j.expneurol.2016.11.014 PMid:27889467
21. Larson EB, Wang LI, Bowen JD, McCormick WC, Teri L, Crane P, et al. Exercise is associated with reduced risk for incident dementia among persons 65 years of age and older. Ann Intern Med. 2006;144(2):73-81. doi:10.7326/0003-4819-144-2-200601170-00004 PMid:16418406
22. Ngolab J, Honma P, Rissman RA. Reflections on the utility of the retina as a biomarker for Alzheimer's disease: a literature review. Neurol Ther. 2019;8:57-72. doi:10.1007/s40120-019-00173-4 PMid:31833024 PMCid:PMC6908534
23. Paterson D, Nordberg A. Neuronal nicotinic receptors in the human brain. Prog Neurobiol. 2000; 61(1):75-111. doi:10.1016/S0301-0082(99)00045-3 PMid:10759066
24. Pereira RP, Fachinetto R, de Souza Prestes A, Puntel RL, Santos da Silva GN, Heinzmann BM, et al. Antioxidant effects of different extracts from Melissa officinalis, Matricaria recutita and Cymbopogon citratus. Neurochem Res. 2009;34: 973-83. doi:10.1007/s11064-008-9861-z PMid:18853256
25. Perry N, Court G, Bidet N, Court J, Perry E. European herbs with cholinergic activities: potential in dementia therapy. Int J Geriatr Psychiatry. 1996; 11(12):1063-9. doi:10.1002/(SICI)1099-1166(199612)11:12<1063::AID-GPS532>3.0.CO;2-1
26. Radak Z, Suzuki K, Higuchi M, Balogh L, Boldogh I, Koltai E. Physical exercise, reactive oxygen species and neuroprotection. Free Radic Biol Med. 2016;98:187-96. doi:10.1016/j.freeradbiomed.2016.01.024 PMid:26828019
27. Reinsberger C. Of running mice and exercising humans-the quest for mechanisms and biomarkers of exercise-induced neurogenesis and plasticity. Dtsch Z Sportmed. 2015;66(2). doi:10.5960/dzsm.2015.165
28. Roth KA. Caspases, apoptosis, and Alzheimer disease: causation, correlation, and confusion. J Neuropathol Exp Neurol. 2001;60(9):829-38. doi:10.1093/jnen/60.9.829 PMid:11556539
29. Schliebs R. Basal forebrain cholinergic dysfunction in Alzheimer's disease-interrelationship with β-amyloid, inflammation and neurotrophin signaling. Neurochem Res. 2005;30:895-929 doi:10.1007/s11064-005-6962-9 PMid:16187224
30. Sepand M, Soodi M, Soleimani M, Hajimehdipoor H. Protective effects of Melissa officinalis extract against beta-amyloid-induced oxidative stress in PC12 cells. J Med Plants. 2012; 11(42):74-85.
31. Thomas AG, Dennis A, Bandettini PA, Johansen-Berg H. The effects of aerobic activity on brain structure. Front Psychol. 2012;3:86. doi:10.3389/fpsyg.2012.00086 PMid:22470361 PMCid:PMC3311131
32. Wake G, Court J, Pickering A, Lewis R, Wilkins R, Perry E. CNS acetylcholine receptor activity in European medicinal plants traditionally used to improve failing memory. J Ethnopharmacol. 2000; 69 (2): 105-14. doi:10.1016/S0378-8741(99)00113-0 PMid:10687867
33. Xiao XQ, Wang R, Han YF, Tang XC. Protective effects of huperzine A on β-amyloid25-35 induced oxidative injury in rat pheochromocytoma cells. Neurosci Lett. 2000; 286 (3):155-8. doi:10.1016/S0304-3940(00)01088-0 PMid:10832008
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

navardi M, shabani R, gholamrezaoo darsara S. Effect of aerobic exercise and Melissa officinalis extract on the expression of p53, p21, and caspase-3 genes in the hippocampus of male rats with induced Alzheimer's disease. Feyz Med Sci J 2024; 28 (5) :456-462
URL: http://feyz.kaums.ac.ir/article-1-5246-en.html


Creative Commons License
This open access journal is licensed under a Creative Commons Attribution-NonCommercial ۴.۰ International License. CC BY-NC ۴. Design and publishing by Kashan University of Medical Sciences.
Copyright ۲۰۲۳© Feyz Medical Sciences Journal. All rights reserved.
Volume 28, Issue 5 (Bimonthly 2024) Back to browse issues page
مجله علوم پزشکی فیض Feyz Medical Sciences Journal
Persian site map - English site map - Created in 0.06 seconds with 46 queries by YEKTAWEB 4710