[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Indexing Sources::
Guide for Authors::
Online Submission::
Ethics::
Articles archive::
For Reviewers::
Contact us::
::
Basic and Clinical Biochemistry and Nutrition
..
DOAJ
..
CINAHL
..
EBSCO
..
IMEMR
..
ISC
..
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
enamad
..
:: Volume 28, Issue 5 (Bimonthly 2024) ::
Feyz Med Sci J 2024, 28(5): 471-480 Back to browse issues page
The combined effects of swimming exercise and stem cell transplantation on the expression of CD9 and CD63 tetraspanin genes in a rat model of azoospermia
Maziyar Shojaee , Lida Moradi * , Parvin Farzanei , Bahram Abedi
Department of Exercise Physiology, Faculty of Physical Education, North Tehran Branch, Islamic Azad University, Tehran, Iran & Department of Exercise Physiology, Faculty of Physical Education, North Tehran Branch, Islamic Azad University, Tehran, Iran , moradi.lida@gmail.com
Abstract:   (222 Views)
Background and Aim: Azoospermia, defined as the absence of sperm in semen, is a common cause of male infertility. This study aimed to determine the combined effects of swimming exercise and stem cell transplantation on the expression of CD9 and CD63 tetraspanin genes associated with spermatogenesis in an animal model of azoospermia.
Methods: In this experimental study, male rats were randomly divided into several groups after the induction of azoospermia. The groups included a healthy control group, an azoospermia group, an azoospermia + exercise group, an azoospermia + stem cell group, and an azoospermia + stem cell + exercise group. One million stem cells were transplanted into the vas deferens of each rat one month after the induction of azoospermia. Swimming exercise was performed daily for 30 minutes, 5 days a week for 8 weeks. After stem cell transplantation and exercise, the expression of CD9 and CD63 genes in testicular tissue was measured using Real-time PCR.
Results: Both swimming exercise and stem cell transplantation, individually and in combination, had a significant effect on the expression of CD9 (F=23.475, P=0.001) and CD63 genes (F=19.186, P=0.002). These findings indicate that both interventions are effective in improving the spermatogenesis process in the animal model of azoospermia.
Conclusion: The results of this study show that the combination of swimming exercise and stem cell transplantation can be considered as a novel therapeutic approach to improve fertility in men with azoospermia. The possible mechanism of this effect may be through the regulation of genes involved in spermatogenesis.

 
Keywords: Azoospermia, stem cells, swimming exercise, CD9, CD63
Full-Text [PDF 483 kb]   (83 Downloads)    
Type of Study: Research | Subject: General
Received: 2024/08/20 | Revised: 2024/12/29 | Accepted: 2024/11/13 | Published: 2024/12/23
References
1. He H, Yu F, Shen W, Chen K, Zhang L, Lou S, et al. The Novel Key Genes of Non-obstructive Azoospermia Affect Spermatogenesis: Transcriptomic Analysis Based on RNA-Seq and scRNA-Seq Data. Front Genet. 2021; 12: 251. doi:10.3389/fgene.2021.608629 PMid:33732283 PMCid:PMC7959792
2. Maleki B, Shabani S, Vallian Borojeni S. The role of miRNA in spermatogenesis and male infertility. Lab Diag. 2018; 10(41): 48-55.
3. Kohn TP, Pastuszak AW. Non-obstructive azoospermia and shortened leukocyte telomere length: further evidence linking poor health and infertility. Fertil Steril. 2018; 110(4): 629-30. doi:10.1016/j.fertnstert.2018.06.013PMid:30196950
4. Vij SC, Sabanegh Jr E, Agarwal A. Biological therapy for non-obstructive azoospermia. Expert Opin Biol Ther. 2018; 18(1): 19-23. doi:10.1080/14712598.2018.1380622 PMid:28927307
5. Caroppo E, Colpi GM. Hormonal treatment of men with nonobstructive azoospermia: what does the evidence suggest? J Clin Med. 2021; 10(3): 387. doi:10.3390/jcm10030387 PMid:33498414 PMCid:PMC7864204
6. Oud MS, Ramos L, O'Bryan MK, McLachlan RI, Okutman Ö, Viville S, et al. Validation and application of a novel integrated genetic screening method to a cohort of 1,112 men with idiopathic azoospermia or severe oligozoospermia. Human Mutation. 2017; 38(11): 1592-605. doi:10.1002/humu.23312 PMid:28801929
7. Kumanov P. Managing Infertility Due to Endocrine Causes. The Diagnosis and Treatment of Male Infertility: Springer; 2017. 63-78. doi:10.1007/978-3-319-56547-7_5
8. Gordetsky J, van Wijngaarden E, O'Brien J. Redefining abnormal follicle‐stimulating hormone in the male infertility population. BJU Int. 2012; 110(4): 568-72. doi:10.1111/j.1464-410X.2011.10783.x PMid:22177092
9. Ring J, Welliver C, Parenteau M, Markwell S, Brannigan RE, Köhler TS. The utility of sex hormone-binding globulin in hypogonadism and infertile males. J Urol. 2017; 197(5): 1326-31. doi:10.1016/j.juro.2017.01.018 PMid:28087298
10. Yu S, Zhao Y, Zhang FL, Li YQ, Shen W, Sun Z-Y. Chestnut polysaccharides benefit spermato-genesis through improvement in the expression of important genes. Aging (Albany NY). 2020; 12(12): 11431. doi:10.18632/aging.103205 PMid:32568099 PMCid:PMC7343452
11. Mobarak H, Heidarpour M, Rahbarghazi R, Nouri M, Mahdipour M. Amniotic fluid-derived exosomes improved spermatogenesis in a rat model of azoospermia. Life Sci. 2021; 274: 119336. doi:10.1016/j.lfs.2021.119336 PMid:33716061
12. Charrin S, Jouannet S, Boucheix C, Rubinstein E. Tetraspanins at a glance. J Cell Sci. 2014:127(Pt 17): 3641-8. doi:10.1242/jcs.154906 PMid:25128561
13. Florin L, de Winde, CM. Recent advancements in the understanding of tetraspanin functions. Med Microbiol Immunol 2020; 209(4): 393-5. doi:10.1007/s00430-020-00687-x PMid:32705340 PMCid:PMC7376529
14. Barranco I, Padilla L, Parrilla I, Álvarez-Barrientos A, Pérez-Patiño C, Peña FJ, et al. Extra-cellular vesicles isolated from porcine seminal plasma exhibit different tetraspanin expression pro-files. Sci Reports. 2019; 9(1): 1-9. doi:10.1038/s41598-019-48095-3 PMid:31399634 PMCid:PMC6689046
15. Fan Y, Pionneau C, Cocozza F, Boëlle PY, Chardonnet S, Charrin S, et al. Differential proteomics argues against a general role for CD9, CD81 or CD63 in the sorting of proteins into extracellular vesicles. J Extracell Vesicles. 2023; 12(8): 12352. doi:10.1002/jev2.12352 PMid:37525398 PMCid:PMC10390663
16. Tognoli ML, Dancourt J, Bonsergent E, Palmulli R, de Jong OG, Van Niel G, Rubinstein E, Vader P, Lavieu G. Lack of involvement of CD63 and CD9 tetraspanins in the extracellular vesicle content delivery process. Communications Biol. 2023; 6(1): 532. doi:10.1038/s42003-023-04911-1 PMid:37198427 PMCid:PMC10192366
17. Rimmer MP, Gregory CD, Mitchell RT. The transformative impact of extracellular vesicles on developing sperm. Reprod Fertil. 2021; 2(3): R51-R66. doi: 10.1530/RAF-20-0076. PMID: 35118397; PMCID: PMC8788574. doi:10.1530/RAF-20-0076 PMid:35118397 PMCid:PMC8788574
18. Nikbin S, Derakhshideh A, Karimi Jafari S, Mirzahamedani A, Moslehi A, Ourzamani S, et al. Investigating the protective effect of aerobic exercise on oxidative stress and histological damages of testicular tissue associated with chlorpyrifos in male rats. Andrologia. 2020; 52(2): e13468. doi:10.1111/and.13468 PMid:31773799
19. Khosravi Sadr M, Nasiri E, Khalili M. The effect of resistance training on testicular function and spermatogenesis process and sperm parameters of adult male Wistar rats. Daneshvar Medi-cine: Basic Clin Res J. 2021; 28(5): 11-22.
20. Li Y, Zhang L, Zheng X, Qian J, Li Y, Xie C, et al. Dietary restriction and/or exercise training impairs spermatogenesis in normal rats. Applied Physiology, Nutr Metab. 2021;46(3):229-37. doi:10.1139/apnm-2020-0477 PMid:32905708
21. Thompson M, Mei SH, Wolfe D, Champagne J, Fergusson D, Stewart DJ, et al. Cell therapy with intravascular administration of mesenchymal stromal cells continues to appear safe: an updated systematic review and meta-analysis. EClinicalMedicine. 2020; 19: 100249. doi:10.1016/j.eclinm.2019.100249 PMid:31989101 PMCid:PMC6970160
22. Kim HJ, Park JS. Usage of human mesenchymal stem cells in cell-based therapy: advantages and disadvantages. Dev Reprod. 2017; 21(1): 1. doi:10.12717/DR.2017.21.1.001 PMid:28484739 PMCid:PMC5409204
23. Zhankina R, Baghban N, Askarov M, Saipiyeva D, Ibragimov A, Kadirova B, et al. Mesenchymal stromal/stem cells and their exosomes for restoration of spermatogenesis in non-obstructive azoospermia: a systemic review. Stem Cell Res Ther. 2021; 12(1): 1-12. doi:10.1186/s13287-021-02295-9 PMid:33823925 PMCid:PMC8025392
24. Zohrabi Karani L, Farzanegi P, Azarbayjani MA. The Effect of 8-Weeks of Low-Intensity Swimming Training on Promyelocytic Leukemia Zinc Finger Protein and Spermatid Transition Nuclear Protein Gene Expression in Azoospermic Rats Model. Horizon Med Sci. 2020; 26(4):332-47. doi:10.32598/hms.26.4.450.2
25. Asadi M, farzanegi P, Azarbayjani M A. The effect of swimming training, cell and laser on the expression of genes involved in autophagy (LC3 and Beclin-1) in azoospermia mice. RJMS 2023; 30 (7). doi:10.47176/rjms.30.166
26. Boucheix C, Rubinstein E. Tetraspanins. Cellular and Molecular Life Sciences CMLS. 2001; 58:1189-205. doi:10.1007/PL00000933 PMid:11577978 PMCid:PMC11337403
27. Huang CL LD, Masuya D, Kameyama K, Nakashima T, Yokomise H UM, Miyake M. MRP- 1/CD9 gene transduction downregulates Wnt signal pathways. Oncogene. 2004: 83/7475-23. doi:10.1038/sj.onc.1208063 PMid:15334057
28. Kraft S, Jouvin MH, Kulkarni N, Kissing S, Morgan ES, Dvorak AM, et al. The tetraspanin CD63 is required for efficient IgE-mediated mast cell degranulation and anaphylaxis. J Immunol. 2013; 191: 2871-8. doi:10.4049/jimmunol.1202323 PMid:23945142 PMCid:PMC3780990
29. Israels SJ, McMillan-Ward EM. Palmitoylation supports the association of tetraspanin CD63 with CD9 and integrin alphaIIbbeta3 in activated platelets. Thromb Res. 2010; 125: 152-8 doi:10.1016/j.thromres.2009.07.005 PMid:19640571
30. Chen X, Deng H, Churchill MJ, Luchsinger LL, Du X, Chu TH, et al. Bone marrow myeloid cells regulate myeloid-biased hematopoietic stem cells via a histamine-dependent feedback loop. Cell Stem Cell. 2017; 21: 747-60 e747. doi:10.1016/j.stem.2017.11.003 PMid:29198940 PMCid:PMC5975960
31. Kobuch J, Cui H, Grunwald B, Saftig P, Knolle PA, Kruger A. TIMP-1 signaling via CD63 triggers granulopoiesis and neutrophilia in mice. Haematologica. 2015;100:1005-13. doi:10.3324/haematol.2014.121590 PMid:26001794 PMCid:PMC5004415
32. Easterday DS, Lark DS. Circulating Tetraspanins: From Markers to Mechanisms Driving Systemic Exercise Adaptation. Function (Oxf). 2023; 4(6): zqad048. doi:10.1093/function/zqad048 PMid:37753183 PMCid:PMC10519272
33. Qiu Y, Pan X, Chen Y, Xiao J. Hallmarks of exercised heart. J Mol Cell Cardiol. 2021; 164: 126-35. doi:10.1016/j.yjmcc.2021.12.004 PMid:34914934
34. Fiuza-Luces C, Santos-Lozano A, Joyner M, Carrera-Bastos P, Picazo O, Zugaza JL, et al. Exercie benefits in cardiovascular disease: beyond attenuation of traditional risk factors. Nat Rev Cardiol. 2018; 15: 731-43. doi:10.1038/s41569-018-0065-1 PMid:30115967
35. Adusumilli VS, Walker TL, Overall RW, Klatt GM, Zeidan SA, Zocher S, et al. ROS dynamics delineate functional states of hippocampal neural stem cells and link to their activity-dependent exit from quiescence. Cell Stem Cell. 2021; 28: 300-14 e306. doi:10.1016/j.stem.2020.10.019 PMid:33275875 PMCid:PMC7875116
36. Brett JO, Arjona M, Ikeda M, Quarta M, de Morrée A, Egner IM, et al. Exercise rejuvenates quiescent skeletal muscle stem cells in old mice through restoration of Cyclin D1. Nat Metab. 2020; 2: 307-17. doi:10.1038/s42255-020-0190-0 PMid:32601609 PMCid:PMC7323974
37. Bernardo BC, Ooi JYY, Weeks KL, Patterson NL, McMullen JR. Understanding key mechanisms of exercise-induced cardiac protection to mitigate disease: current knowledge and emerging concepts. Physiol Rev. 2018; 98: 419-75. doi:10.1152/physrev.00043.2016 PMid:29351515
38. Bei Y, Wang L, Ding R, Che L, Fan Z, Gao W, et al. Animal exercise studies in cardiovascular research: current knowledge and optimal design-A position paper of the Committee on Cardiac Rehabilitation, Chinese Medical Doctors' Association. J Sport Health Sci. 2021;10:660-674. doi:10.1016/j.jshs.2021.08.002 PMid:34454088 PMCid:PMC8724626
39. Chen Z, Li L, Wu W, Liu Z, Huang Y, Yang L, et al. Exercise protects proliferative muscle satellite cells against exhaustion via the Igfbp7-Akt-mTOR axis. Theranostics. 2020; 10: 6448-66. doi:10.7150/thno.43577 PMid:32483463 PMCid:PMC7255041
40. Abreu P, Kowaltowski AJ. Satellite cell self-renewal in endurance exercise is mediated by inhibition of mitochondrial oxygen consumption. J Cachexia Sarcopenia Muscle. 2020; 11: 1661-76. doi:10.1002/jcsm.12601 PMid:32748470 PMCid:PMC7749620
41. Leiter O, Seidemann S, Overall RW, Ramasz B, Rund N, Schallenberg S, et al. Exercise-induced activated platelets increase adult hippocampal precursor proliferation and promote neuronal differentiation. Stem Cell Rep. 2019; 12: 667-79. doi:10.1016/j.stemcr.2019.02.009 PMid:30905740 PMCid:PMC6450435
42. Saito Y, Chikenji TS, Matsumura T, Nakano M, Fujimiya M. Exercise enhances skeletal muscle regeneration by promoting senescence in fibro-adipogenic progenitors. Nat Commun. 2020; 11: 889. doi:10.1038/s41467-020-14734-x PMid:32060352 PMCid:PMC7021787
43. Seib DR, Martin-Villalba A. Neurogenesis in the normal ageing hippocampus: a mini-review. Gerontology. 2015; 61: 327-35. doi:10.1159/000368575 PMid:25471300
44. Kretzschmar K, Watt FM. Markers of epidermal stem cell subpopulations in adult mammalian skin. Cold Spring Harb Perspect Med. 2014;4:10. doi:10.1101/cshperspect.a013631 PMid:24993676 PMCid:PMC4200210
45. Shin S, Kaestner KH. The origin, biology, and therapeutic potential of facultative adult hepatic progenitor cells. Curr Top Dev Biol. 2014; 107: 269-92. doi:10.1016/B978-0-12-416022-4.00010-X PMid:24439810 PMCid:PMC4708083
46. Leri A, Rota M, Hosoda T, Goichberg P, Anversa P. Cardiac stem cell niches. Stem Cell Res. 2014; 13: 631-46. doi:10.1016/j.scr.2014.09.001 PMid:25267073 PMCid:PMC4253904
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Shojaee M, moradi L, Farzanei P, Abedi B. The combined effects of swimming exercise and stem cell transplantation on the expression of CD9 and CD63 tetraspanin genes in a rat model of azoospermia. Feyz Med Sci J 2024; 28 (5) :471-480
URL: http://feyz.kaums.ac.ir/article-1-5226-en.html


Creative Commons License
This open access journal is licensed under a Creative Commons Attribution-NonCommercial ۴.۰ International License. CC BY-NC ۴. Design and publishing by Kashan University of Medical Sciences.
Copyright ۲۰۲۳© Feyz Medical Sciences Journal. All rights reserved.
Volume 28, Issue 5 (Bimonthly 2024) Back to browse issues page
مجله علوم پزشکی فیض Feyz Medical Sciences Journal
Persian site map - English site map - Created in 0.07 seconds with 46 queries by YEKTAWEB 4660