1. He H, Yu F, Shen W, Chen K, Zhang L, Lou S, et al. The Novel Key Genes of Non-obstructive Azoospermia Affect Spermatogenesis: Transcriptomic Analysis Based on RNA-Seq and scRNA-Seq Data. Front Genet. 2021; 12: 251. doi:10.3389/fgene.2021.608629 PMid:33732283 PMCid:PMC7959792 2. Maleki B, Shabani S, Vallian Borojeni S. The role of miRNA in spermatogenesis and male infertility. Lab Diag. 2018; 10(41): 48-55. 3. Kohn TP, Pastuszak AW. Non-obstructive azoospermia and shortened leukocyte telomere length: further evidence linking poor health and infertility. Fertil Steril. 2018; 110(4): 629-30. doi:10.1016/j.fertnstert.2018.06.013PMid:30196950 4. Vij SC, Sabanegh Jr E, Agarwal A. Biological therapy for non-obstructive azoospermia. Expert Opin Biol Ther. 2018; 18(1): 19-23. doi:10.1080/14712598.2018.1380622 PMid:28927307 5. Caroppo E, Colpi GM. Hormonal treatment of men with nonobstructive azoospermia: what does the evidence suggest? J Clin Med. 2021; 10(3): 387. doi:10.3390/jcm10030387 PMid:33498414 PMCid:PMC7864204 6. Oud MS, Ramos L, O'Bryan MK, McLachlan RI, Okutman Ö, Viville S, et al. Validation and application of a novel integrated genetic screening method to a cohort of 1,112 men with idiopathic azoospermia or severe oligozoospermia. Human Mutation. 2017; 38(11): 1592-605. doi:10.1002/humu.23312 PMid:28801929 7. Kumanov P. Managing Infertility Due to Endocrine Causes. The Diagnosis and Treatment of Male Infertility: Springer; 2017. 63-78. doi:10.1007/978-3-319-56547-7_5 8. Gordetsky J, van Wijngaarden E, O'Brien J. Redefining abnormal follicle‐stimulating hormone in the male infertility population. BJU Int. 2012; 110(4): 568-72. doi:10.1111/j.1464-410X.2011.10783.x PMid:22177092 9. Ring J, Welliver C, Parenteau M, Markwell S, Brannigan RE, Köhler TS. The utility of sex hormone-binding globulin in hypogonadism and infertile males. J Urol. 2017; 197(5): 1326-31. doi:10.1016/j.juro.2017.01.018 PMid:28087298 10. Yu S, Zhao Y, Zhang FL, Li YQ, Shen W, Sun Z-Y. Chestnut polysaccharides benefit spermato-genesis through improvement in the expression of important genes. Aging (Albany NY). 2020; 12(12): 11431. doi:10.18632/aging.103205 PMid:32568099 PMCid:PMC7343452 11. Mobarak H, Heidarpour M, Rahbarghazi R, Nouri M, Mahdipour M. Amniotic fluid-derived exosomes improved spermatogenesis in a rat model of azoospermia. Life Sci. 2021; 274: 119336. doi:10.1016/j.lfs.2021.119336 PMid:33716061 12. Charrin S, Jouannet S, Boucheix C, Rubinstein E. Tetraspanins at a glance. J Cell Sci. 2014:127(Pt 17): 3641-8. doi:10.1242/jcs.154906 PMid:25128561 13. Florin L, de Winde, CM. Recent advancements in the understanding of tetraspanin functions. Med Microbiol Immunol 2020; 209(4): 393-5. doi:10.1007/s00430-020-00687-x PMid:32705340 PMCid:PMC7376529 14. Barranco I, Padilla L, Parrilla I, Álvarez-Barrientos A, Pérez-Patiño C, Peña FJ, et al. Extra-cellular vesicles isolated from porcine seminal plasma exhibit different tetraspanin expression pro-files. Sci Reports. 2019; 9(1): 1-9. doi:10.1038/s41598-019-48095-3 PMid:31399634 PMCid:PMC6689046 15. Fan Y, Pionneau C, Cocozza F, Boëlle PY, Chardonnet S, Charrin S, et al. Differential proteomics argues against a general role for CD9, CD81 or CD63 in the sorting of proteins into extracellular vesicles. J Extracell Vesicles. 2023; 12(8): 12352. doi:10.1002/jev2.12352 PMid:37525398 PMCid:PMC10390663 16. Tognoli ML, Dancourt J, Bonsergent E, Palmulli R, de Jong OG, Van Niel G, Rubinstein E, Vader P, Lavieu G. Lack of involvement of CD63 and CD9 tetraspanins in the extracellular vesicle content delivery process. Communications Biol. 2023; 6(1): 532. doi:10.1038/s42003-023-04911-1 PMid:37198427 PMCid:PMC10192366 17. Rimmer MP, Gregory CD, Mitchell RT. The transformative impact of extracellular vesicles on developing sperm. Reprod Fertil. 2021; 2(3): R51-R66. doi: 10.1530/RAF-20-0076. PMID: 35118397; PMCID: PMC8788574. doi:10.1530/RAF-20-0076 PMid:35118397 PMCid:PMC8788574 18. Nikbin S, Derakhshideh A, Karimi Jafari S, Mirzahamedani A, Moslehi A, Ourzamani S, et al. Investigating the protective effect of aerobic exercise on oxidative stress and histological damages of testicular tissue associated with chlorpyrifos in male rats. Andrologia. 2020; 52(2): e13468. doi:10.1111/and.13468 PMid:31773799 19. Khosravi Sadr M, Nasiri E, Khalili M. The effect of resistance training on testicular function and spermatogenesis process and sperm parameters of adult male Wistar rats. Daneshvar Medi-cine: Basic Clin Res J. 2021; 28(5): 11-22. 20. Li Y, Zhang L, Zheng X, Qian J, Li Y, Xie C, et al. Dietary restriction and/or exercise training impairs spermatogenesis in normal rats. Applied Physiology, Nutr Metab. 2021;46(3):229-37. doi:10.1139/apnm-2020-0477 PMid:32905708 21. Thompson M, Mei SH, Wolfe D, Champagne J, Fergusson D, Stewart DJ, et al. Cell therapy with intravascular administration of mesenchymal stromal cells continues to appear safe: an updated systematic review and meta-analysis. EClinicalMedicine. 2020; 19: 100249. doi:10.1016/j.eclinm.2019.100249 PMid:31989101 PMCid:PMC6970160 22. Kim HJ, Park JS. Usage of human mesenchymal stem cells in cell-based therapy: advantages and disadvantages. Dev Reprod. 2017; 21(1): 1. doi:10.12717/DR.2017.21.1.001 PMid:28484739 PMCid:PMC5409204 23. Zhankina R, Baghban N, Askarov M, Saipiyeva D, Ibragimov A, Kadirova B, et al. Mesenchymal stromal/stem cells and their exosomes for restoration of spermatogenesis in non-obstructive azoospermia: a systemic review. Stem Cell Res Ther. 2021; 12(1): 1-12. doi:10.1186/s13287-021-02295-9 PMid:33823925 PMCid:PMC8025392 24. Zohrabi Karani L, Farzanegi P, Azarbayjani MA. The Effect of 8-Weeks of Low-Intensity Swimming Training on Promyelocytic Leukemia Zinc Finger Protein and Spermatid Transition Nuclear Protein Gene Expression in Azoospermic Rats Model. Horizon Med Sci. 2020; 26(4):332-47. doi:10.32598/hms.26.4.450.2 25. Asadi M, farzanegi P, Azarbayjani M A. The effect of swimming training, cell and laser on the expression of genes involved in autophagy (LC3 and Beclin-1) in azoospermia mice. RJMS 2023; 30 (7). doi:10.47176/rjms.30.166 26. Boucheix C, Rubinstein E. Tetraspanins. Cellular and Molecular Life Sciences CMLS. 2001; 58:1189-205. doi:10.1007/PL00000933 PMid:11577978 PMCid:PMC11337403 27. Huang CL LD, Masuya D, Kameyama K, Nakashima T, Yokomise H UM, Miyake M. MRP- 1/CD9 gene transduction downregulates Wnt signal pathways. Oncogene. 2004: 83/7475-23. doi:10.1038/sj.onc.1208063 PMid:15334057 28. Kraft S, Jouvin MH, Kulkarni N, Kissing S, Morgan ES, Dvorak AM, et al. The tetraspanin CD63 is required for efficient IgE-mediated mast cell degranulation and anaphylaxis. J Immunol. 2013; 191: 2871-8. doi:10.4049/jimmunol.1202323 PMid:23945142 PMCid:PMC3780990 29. Israels SJ, McMillan-Ward EM. Palmitoylation supports the association of tetraspanin CD63 with CD9 and integrin alphaIIbbeta3 in activated platelets. Thromb Res. 2010; 125: 152-8 doi:10.1016/j.thromres.2009.07.005 PMid:19640571 30. Chen X, Deng H, Churchill MJ, Luchsinger LL, Du X, Chu TH, et al. Bone marrow myeloid cells regulate myeloid-biased hematopoietic stem cells via a histamine-dependent feedback loop. Cell Stem Cell. 2017; 21: 747-60 e747. doi:10.1016/j.stem.2017.11.003 PMid:29198940 PMCid:PMC5975960 31. Kobuch J, Cui H, Grunwald B, Saftig P, Knolle PA, Kruger A. TIMP-1 signaling via CD63 triggers granulopoiesis and neutrophilia in mice. Haematologica. 2015;100:1005-13. doi:10.3324/haematol.2014.121590 PMid:26001794 PMCid:PMC5004415 32. Easterday DS, Lark DS. Circulating Tetraspanins: From Markers to Mechanisms Driving Systemic Exercise Adaptation. Function (Oxf). 2023; 4(6): zqad048. doi:10.1093/function/zqad048 PMid:37753183 PMCid:PMC10519272 33. Qiu Y, Pan X, Chen Y, Xiao J. Hallmarks of exercised heart. J Mol Cell Cardiol. 2021; 164: 126-35. doi:10.1016/j.yjmcc.2021.12.004 PMid:34914934 34. Fiuza-Luces C, Santos-Lozano A, Joyner M, Carrera-Bastos P, Picazo O, Zugaza JL, et al. Exercie benefits in cardiovascular disease: beyond attenuation of traditional risk factors. Nat Rev Cardiol. 2018; 15: 731-43. doi:10.1038/s41569-018-0065-1 PMid:30115967 35. Adusumilli VS, Walker TL, Overall RW, Klatt GM, Zeidan SA, Zocher S, et al. ROS dynamics delineate functional states of hippocampal neural stem cells and link to their activity-dependent exit from quiescence. Cell Stem Cell. 2021; 28: 300-14 e306. doi:10.1016/j.stem.2020.10.019 PMid:33275875 PMCid:PMC7875116 36. Brett JO, Arjona M, Ikeda M, Quarta M, de Morrée A, Egner IM, et al. Exercise rejuvenates quiescent skeletal muscle stem cells in old mice through restoration of Cyclin D1. Nat Metab. 2020; 2: 307-17. doi:10.1038/s42255-020-0190-0 PMid:32601609 PMCid:PMC7323974 37. Bernardo BC, Ooi JYY, Weeks KL, Patterson NL, McMullen JR. Understanding key mechanisms of exercise-induced cardiac protection to mitigate disease: current knowledge and emerging concepts. Physiol Rev. 2018; 98: 419-75. doi:10.1152/physrev.00043.2016 PMid:29351515 38. Bei Y, Wang L, Ding R, Che L, Fan Z, Gao W, et al. Animal exercise studies in cardiovascular research: current knowledge and optimal design-A position paper of the Committee on Cardiac Rehabilitation, Chinese Medical Doctors' Association. J Sport Health Sci. 2021;10:660-674. doi:10.1016/j.jshs.2021.08.002 PMid:34454088 PMCid:PMC8724626 39. Chen Z, Li L, Wu W, Liu Z, Huang Y, Yang L, et al. Exercise protects proliferative muscle satellite cells against exhaustion via the Igfbp7-Akt-mTOR axis. Theranostics. 2020; 10: 6448-66. doi:10.7150/thno.43577 PMid:32483463 PMCid:PMC7255041 40. Abreu P, Kowaltowski AJ. Satellite cell self-renewal in endurance exercise is mediated by inhibition of mitochondrial oxygen consumption. J Cachexia Sarcopenia Muscle. 2020; 11: 1661-76. doi:10.1002/jcsm.12601 PMid:32748470 PMCid:PMC7749620 41. Leiter O, Seidemann S, Overall RW, Ramasz B, Rund N, Schallenberg S, et al. Exercise-induced activated platelets increase adult hippocampal precursor proliferation and promote neuronal differentiation. Stem Cell Rep. 2019; 12: 667-79. doi:10.1016/j.stemcr.2019.02.009 PMid:30905740 PMCid:PMC6450435 42. Saito Y, Chikenji TS, Matsumura T, Nakano M, Fujimiya M. Exercise enhances skeletal muscle regeneration by promoting senescence in fibro-adipogenic progenitors. Nat Commun. 2020; 11: 889. doi:10.1038/s41467-020-14734-x PMid:32060352 PMCid:PMC7021787 43. Seib DR, Martin-Villalba A. Neurogenesis in the normal ageing hippocampus: a mini-review. Gerontology. 2015; 61: 327-35. doi:10.1159/000368575 PMid:25471300 44. Kretzschmar K, Watt FM. Markers of epidermal stem cell subpopulations in adult mammalian skin. Cold Spring Harb Perspect Med. 2014;4:10. doi:10.1101/cshperspect.a013631 PMid:24993676 PMCid:PMC4200210 45. Shin S, Kaestner KH. The origin, biology, and therapeutic potential of facultative adult hepatic progenitor cells. Curr Top Dev Biol. 2014; 107: 269-92. doi:10.1016/B978-0-12-416022-4.00010-X PMid:24439810 PMCid:PMC4708083 46. Leri A, Rota M, Hosoda T, Goichberg P, Anversa P. Cardiac stem cell niches. Stem Cell Res. 2014; 13: 631-46. doi:10.1016/j.scr.2014.09.001 PMid:25267073 PMCid:PMC4253904
|