1. Matheus ASdM, Tannus LRM, Cobas RA, Palma CCS, Negrato CA, Gomes MdB. Impact of diabetes on cardiovascular disease: an update. International journal of hypertension. 2013; 2013. doi:10.1155/2013/653789 2. Glovaci D, Fan W, Wong ND. Epidemiology of diabetes mellitus and cardiovascular disease. Curr Cardiol Reports. 2019;21:1-8. doi:10.1007/s11886-019-1107-y 3. Duncan BB, Schmidt MI, Pankow JS, Ballantyne CM, Couper D, Vigo A, et al. Atherosclerosis Risk in Communities Study. Low-grade systemic inflammation and the development of type 2 diabetes: the atherosclerosis risk in communities study. Diabetes. 2003; 52(7): 1799-805 doi:10.2337/diabetes.52.7.1799 4. Shoelson SE, Lee J, Goldfine AB. Inflammation and insulin resistance. J Clin Invest. 2006; 116(7):1793-801. doi:10.1172/JCI29069 5. Getz GS. Thematic review series: the immune system and atherogenesis. Immune function in atherogenesis. J lipid Res. 2005; 46(1): 1-10. doi:10.1194/jlr.R400013-JLR200 6. Schoenfeld BJ. The mechanisms of muscle hypertrophy and their application to resistance training. J Strength Cond Res. 2010; 24(10): 2857-72. doi:10.1519/JSC.0b013e3181e840f3 7. Huang X, Liu G, Guo J, Su Z. The PI3K/AKT pathway in obesity and type 2 diabetes. Int J Biol Sci. 2018; 14(11):1483. doi:10.7150/ijbs.27173 8. Yang H, Cao Q, Xiong X, Zhao P, Shen D, Zhang Y, Zhang N. Fluoxetine regulates glucose and lipid metabolism via the PI3K AKT signaling pathway in diabetic rats. Mol Med Reports. 2020; 22(4): 3073-80. doi:10.3892/mmr.2020.11416 9. Abeyrathna P, Su Y. The critical role of Akt in cardiovascular function. Vascular pharmacology. 2015; 74: 38-48. doi:10.1016/j.vph.2015.05.008 10. Cai H, Dong LQ, Liu F. Recent advances in adipose mTOR signaling and function: therapeutic prospects. Trends Pharmacol Sci. 2016; 37(4): 303-17. doi:10.1016/j.tips.2015.11.011 11. Nadi M, Banaeifar A, Arshadi S. Effect of an aerobic exercise course on PI3K and AKT1 expression and neural muscle insulin resistance in diabetic rats. Iranian journal of diabetes and obesity. 2021. doi:10.18502/ijdo.v13i3.7190 12. DeBosch B, Treskov I, Lupu TS, Weinheimer C, Kovacs A, Courtois M, Muslin AJ. Akt1 is required for physiological cardiac growth. Circulation. 2006; 113(17): 2097-104 doi:10.1161/CIRCULATIONAHA.105.595231 13. Shiojima I, Walsh K. Regulation of cardiac growth and coronary angiogenesis by the Akt/PKB signaling pathway. Genes Development. 2006; 20 (24): 3347-65. doi:10.1101/gad.1492806 14. Eslick GD, Thampan BV, Nalos M, McLean AS, Sluyter R. Circulating interleukin-18 concentrations and a loss-of-function P2X7 polymorphism in heart failure. Int J Cardiol. 2009; 137(1): 81-3. doi:10.1016/j.ijcard.2008.05.017 15. Mallat Z, Heymes C, Corbaz A, Logeart D, Alouani S, Cohen‐Solal A, et al. Evidence for altered interleukin (IL)‐18 pathway in human heart failure. FASEB J. 2004; 18(14): 1752-4. doi:10.1096/fj.04-2426fje 16. Yamaoka-Tojo M, Tojo T, Inomata T, Machida Y, Osada K, Izumi T. Circulating levels of interleukin 18 reflect etiologies of heart failure: Th1/Th2 cytokine imbalance exaggerates the pathophysiology of advanced heart failure. J Cardiac Failure. 2002; 8(1): 21-7. doi:10.1054/jcaf.2002.31628 17. Milioni F, Malta EdS, Rocha LGSdA, Mesquita CAA, de Freitas EC, Zagatto AM. Acute administration of high doses of taurine does not substantially improve high-intensity running performance and the effect on maximal accumulated oxygen deficit is unclear. Appl Physiol Nutr Metab. 2016;41(5):498-503. doi:10.1139/apnm-2015-0435 18. Haidari F, Asadi M, Mohammadi-Asl J, Ahmadi-Angali K. Evaluation of the effect of oral taurine supplementation on fasting levels of fibroblast growth factors, β-Klotho co-receptor, some biochemical indices and body composition in obese women on a weight-loss diet: a study protocol for a double-blind, randomized controlled trial. Trials. 2019; 20:1-6. doi:10.1186/s13063-019-3421-5 19. Wu G. Important roles of dietary taurine, creatine, carnosine, anserine and 4-hydroxyproline in human nutrition and health. Amino acids. 2020; 52(3): 329-60 doi:10.1007/s00726-020-02823-6 20. Murakami S. Role of taurine in the pathogenesis of obesity. Mol Nutr Food Res. 2015; 59(7): 1353-63. doi:10.1002/mnfr.201500067 21. El Deeb S, Abdelnaby R, Khachab A, Bläsius K, Tingart M, Rath B. Osteopontin as a biochemical marker and severity indicator for idiopathic hip osteoarthritis. Hip Int. 2016; 26(4): 397-403. doi:10.5301/hipint.5000361 22. Sedaghat M, Choobineh S, Ravasi AA. Taurine with combined aerobic and resistance exercise training alleviates myocardium apoptosis in STZ-induced diabetes rats via Akt signaling pathway. Life Sci. 2020;258:118225 doi:10.1016/j.lfs.2020.118225 23. Abbasi T, Nazarali P, Hedayati M, Alizadeh R. The effect of eight weeks of high intensity interval training on osteoponetin and some bone mineral indices in young women. J Physical Education Sport. 2018; 18: 532-5. 24. Campanha-Versiani L, Pereira DAG, Ribeiro-Samora GA, Ramos AV, de Sander Diniz MFH, De Marco LA, Soares MMS. The effect of a muscle weight-bearing and aerobic exercise program on the body composition, muscular strength, biochemical markers, and bone mass of obese patients who have undergone gastric bypass surgery. Obesity Surgery. 2017;27:2129-37. doi:10.1007/s11695-017-2618-5 25. Akbari Vargsaran F, Pourrahim Ghoroghchi A. The Effect of 8 Weeks of Endurance-Resistance Training and Taurine Supplementation on Osteocalcin and Osteopontin Proteins in Diabetic Wistar Rats with STZ. J Sabzevar Univ Med Sci. 2023;30(3):349-62. 26. Biglari S, Gaeini AA, Kordi MR, Ghardashi Afousi A. The effect of 8 weeks high-intensity interval training on myostatin and follistatin gene expression in gastrocnemius muscle of the rats. J Arak Univ Med Sci. 2018; 21(1):1-10. 27. Lu K, Wang L, Wang C, Yang Y, Hu D, Ding R. Effects of high-intensity interval versus continuous moderate intensity aerobic exercise on apoptosis, oxidative stress and metabolism of the infarcted myocardium in a rat model. Mol Med Reports. 2015; 12(2): 2374-82. doi:10.3892/mmr.2015.3669 28. Lester ME, Urso ML, Evans RK, Pierce JR, Spiering BA, Maresh CM, et al. Influence of exercise mode and osteogenic index on bone biomarker responses during short-term physical training. Bone. 2009; 45(4):768-76. doi:10.1016/j.bone.2009.06.001 29. Humphries B, Fenning A, Dugan E, Guinane J, MacRae K. Whole-body vibration effects on bone mineral density in women with or without resistance training. Aviation, space, and environmental medicine. 2009; 80(12): 1025-31. doi:10.3357/ASEM.2573.2009 30. Li S, Wang D, Zhang M, Zhang C, Piao F. Taurine Ameliorates Apoptosis via AKT Pathway in the Kidney of Diabetic Rats. Taurine 12: A Conditionally Essential Amino Acid: Springer; 2022. p. 227-33. doi:10.1007/978-3-030-93337-1_22 31. Chen B, Abaydula Y, Li D, Tan H, Ma X. Taurine ameliorates oxidative stress by regulating PI3K/Akt/GLUT4 pathway in HepG2 cells and diabetic rats [Erratum: 2021; p. 104861]. 2021. doi:10.1016/j.jff.2021.104629 32. Elham H, Siroos CH, Ameneh P GH. The effect of eight weeks of combined aerobic and strength training with taurine supplementation on heart muscle atrophy indices in diabetic rats.2023. 33. Su X, Gu D, Xu L, Liang Z, Luo X, Yang P, Yang J. PI3K/Akt pathway expression in children with different obesity degrees and its relationship with glucolipid metabolism and insulin resistance. American J Translational Res. 2021; 13(6): 6592. 34. Khorami SAH, Abd Mutalib MS, Shiraz MF, Abdullah JA, Rejali Z, Ali RM, Khaza'ai H. Genetic determinants of obesity heterogeneity in type II diabetes. Nutr Metab. 2020; 17. doi:10.21203/rs.3.rs-18810/v2 35. Seo DY, Ko JR, Jang JE, Kim TN, Youm JB, Kwak H-B, et al. Exercise as a potential therapeutic target for diabetic cardiomyopathy: insight into the underlying mechanisms. Int J Mol Sci. 2019; 20(24): 6284. doi:10.3390/ijms20246284 36. Huang CY, Yang AL, Lin YM, Wu FN, Lin JA, Chan YS, et al. Anti-apoptotic and pro-survival effects of exercise training on hypertensive hearts. J Appl Physiol. 2012; 112(5): 883-91. doi:10.1152/japplphysiol.00605.2011 37. Lew JKS, Pearson JT, Schwenke DO, Katare R. Exercise mediated protection of diabetic heart through modulation of microRNA mediated molecular pathways. Cardiovasc Diabetol. 2017; 16: 1-20. doi:10.1186/s12933-016-0484-4 38. Li J, Xu P, Wang Y, Ping Z, Cao X, Zheng Y. Exercise preconditioning plays a protective role in exhaustive rats by activating the PI3K-Akt signaling pathway. Evid Based Complement Alternat Med. 2020; 2020. doi:10.1155/2020/3598932 39. Wang LR, Baek SS. Treadmill exercise activates PI3K/Akt signaling pathway leading to GSK-3β inhibition in the social isolated rat pups. J Exerc Rehabil. 2018; 14(1):4. doi:10.12965/jer.1836054.027 40. Engelman JA, Luo J, Cantley LC. The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet. 2006;7(8):606-19. doi:10.1038/nrg1879 41. McMullen JR, Shioi T, Huang WY, Zhang L, Tarnavski O, Bisping E, et al. The insulin-like growth factor 1 receptor induces physiological heart growth via the phosphoinositide 3-kinase (p110α) pathway. J Biol Chem. 2004; 279(6): 4782-93. doi:10.1074/jbc.M310405200 42. Wang G-g, Li W, Lu Xh, Zhao X, Xu L. Taurine attenuates oxidative stress and alleviates cardiac failure in type I diabetic rats. Croatian medical journal. 2013; 54(2): 171-9. doi:10.3325/cmj.2013.54.171 43. Khalil RM, Abdo WS, Saad A, Khedr EG. Muscle proteolytic system modulation through the effect of taurine on mice bearing muscular atrophy. Mol Cell Biochem. 2018; 444: 161-8. doi:10.1007/s11010-017-3240-5 44. Dinarello CA. Biologic basis for interleukin-1 in disease. Blood. 1996 Mar 15;87(6):2095-147.doi:10.1182/blood.V87.6.2095.bloodjournal8762095 45. Starkie R, Rolland J, Angus D, Anderson M, Febbraio MA. Circulating monocytes are not the source of elevations in plasma IL-6 and TNF-α levels after prolonged running. Am J Physiol Cell Physiol. 2001; 280(4): C769-C74.doi:10.1152/ajpcell.2001.280.4.C769 46. Ostrowski K, Rohde T, Asp S, Schjerling P, Pedersen BK. Pro‐and anti‐inflammatory cytokine balance in strenuous exercise in humans. J Physiol. 1999; 515(1): 287-91. doi:10.1111/j.1469-7793.1999.287ad.x 47. Dinarello CA. Immunological and inflammatory functions of the interleukin-1 family. Annual Rev Immunol. 2009; 27: 519-50. doi:10.1146/annurev.immunol.021908.132612 48. Kapoor M, Martel-Pelletier J, Lajeunesse D, Pelletier JP, Fahmi H. Role of proinflammatory cytokines in the pathophysiology of osteoarthritis. Nat ReviRheumatol. 2011; 7(1): 33-42. doi:10.1038/nrrheum.2010.196 49. Larsen CM, Faulenbach M, Vaag A, Vølund A, Ehses JA, Seifert B, et al. Interleukin-1-receptor antagonist in type 2 diabetes mellitus. New England J Med. 2007; 356(15):1517-26. doi:10.1056/NEJMoa065213 50. Lebel-Binay S, Berger A, Zinzindohoue F, Cugnenc P-H, Thiounn N, Fridman W, Pages F. Interleukin-18: biological properties and clinical implications. Eur cytokine network. 2000;11(1):15-26. 51. Schroder K, Tschopp J. The inflammasomes. cell. 2010; 140(6):821-32. doi:10.1016/j.cell.2010.01.040 52. Taniguchi Si, Sagara J, editors. Regulatory molecules involved in inflammasome formation with special reference to a key mediator protein, ASC. Seminars in immunopathology; 2007: Springer. doi:10.1007/s00281-007-0082-3 53. Denham J, O'Brien BJ, Marques FZ, Charchar FJ. Changes in the leukocyte methylome and its effect on cardiovascular-related genes after exercise. J Appl Physiol. 2015; 118(4):475-88 doi:10.1152/japplphysiol.00878.2014 54. Rönn T, Volkov P, Davegårdh C, Dayeh T, Hall E, Olsson AH, et al. A six months exercise intervention influences the genome-wide DNA methylation pattern in human adipose tissue. PLoS genetics. 2013; 9(6):e1003572. doi:10.1371/journal.pgen.1003572 55. Rowlands DS, Page RA, Sukala WR, Giri M, Ghimbovschi SD, Hayat I, et al. Multi-omic integrated networks connect DNA methylation and miRNA with skeletal muscle plasticity to chronic exercise in Type 2 diabetic obesity. Physiological genomics. 2014; 46(20): 747-65. doi:10.1152/physiolgenomics.00024.2014 56. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE, Drazner MH, et al. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am College Cardiol. 2013; 62(16): e147-e239. doi:10.1161/CIR.0b013e31829e8776 57. De Maeyer C, Beckers P, Vrints CJ, Conraads VM. Exercise training in chronic heart failure. Ther Adv Chronic Dis. 2013; 4(3): 105-17. doi:10.1177/2040622313480382 58. O'Connor CM, Whellan DJ, Lee KL, Keteyian SJ, Cooper LS, Ellis SJ, et al. Efficacy and safety of exercise training in patients with chronic heart failure: HF-ACTION randomized controlled trial. JAMA. 2009; 301(14): 1439-50 doi:10.1001/jama.2009.454 59. Horsburgh S, Robson-Ansley P, Adams R, Smith C. Exercise and inflammation-related epigenetic modifications: focus on DNA methylation. Exerc Immunol Rev. 2015; 21.
|