[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Indexing Sources::
Guide for Authors::
Online Submission::
Ethics::
Articles archive::
For Reviewers::
Contact us::
::
Basic and Clinical Biochemistry and Nutrition
..
DOAJ
..
CINAHL
..
EBSCO
..
IMEMR
..
ISC
..
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
enamad
..
:: Volume 28, Issue 2 (Bimonthly 2024) ::
Feyz Med Sci J 2024, 28(2): 132-140 Back to browse issues page
The effect of 12 weeks of aerobic training and food restriction on dopaminergic and catalepsy neurons in the brain tissue of Parkinson's disease model of rats
Sima Movahed , Jabbar Bashiri * , Hasan Pourrazi , Roghayeh Pozesh Jadidi
Department of Physical Education, Tabriz Branch, Islamic Azad University, Tabriz, Iran , bashiri.jabbar8@iaut.ac.ir
Abstract:   (513 Views)
Background and Aim: Parkinson's disease is a prevalent neurodegenerative disorder characterized by the degeneration of dopaminergic neurons and the presence of catalepsy. This study aimed to investigate the effects of 12 weeks of aerobic training and food restriction on dopaminergic and catalepsy neurons in the brain tissue of Parkinson's disease model of rats.
Methods: In this experimental study, 40 male Wistar rats aged 2-3 months were randomly divided into five groups (n=8): healthy control (C), Parkinson's disease model (P), Parkinson's disease model + aerobic training (P+T), Parkinson's disease model + food restriction (P+FR), and Parkinson's disease model + aerobic training + food restriction (P+T+FR). The aerobic training regimen consisted of three months with five sessions per week at an intensity of 75-80% of maximum oxygen consumption. The food restriction group received approximately 11 grams of food daily. Catalepsy was assessed using the rod test, while dopaminergic neurons were quantified through brain sectioning and microscopic counting.
Results: The P+T+FR group exhibited a significant increase in dopaminergic neuron count compared to the C, P, P+T, and P+FR groups (P=0.001). Furthermore, a significant reduction in catalepsy was observed in the P+T+RF group compared to the P group (P=0.001).
Conclusion: The combination of three months of aerobic training and food restriction resulted in improvements in dopaminergic neuron count and reduced catalepsy in a rat model of Parkinson's disease. These findings suggest that aerobic training and food restriction could serve as potential complementary interventions for Parkinson's disease treatment, alongside pharmacological approaches, warranting further investigation in this area.
Keywords: Parkinson's, Food restriction, Aerobic training, Catalepsy, Dopaminergic neurons
Full-Text [PDF 525 kb]   (306 Downloads)    
Type of Study: Research | Subject: General
Received: 2024/01/8 | Revised: 2024/08/18 | Accepted: 2024/05/19 | Published: 2024/06/2
References
1. Kerr GK, Worringham CJ, Cole MH, Lacherez PF, Wood JM, Silburn PA. Predictors of future falls in Parkinson disease. Neurology. 2010; 75(2): 116-24. doi:10.1212/WNL.0b013e3181e7b688 PMid:20574039
2. Mazzoni P, Wexler NS. Parallel explicit and implicit control of reaching. PLoS One. 2009;4(10):e7557. doi:10.1371/journal.pone.0007557 PMid:19847295 PMCid:PMC2760763
3. Wu T, Hallett M. Neural correlates of dual task performance in patients with Parkinson's disease. J Neurol Neurosurg Psychiatry. 2008;79(7):760-6. doi:10.1136/jnnp.2007.126599 PMid:18006652
4. Barichella M, Cereda E, Cassani E, Pinelli G, Iorio L, Ferri V, et al. Dietary habits and neurological features of Parkinson's disease patients: implications for practice. Clin Nutr. 2017; 36 (4):1054-61 doi:10.1016/j.clnu.2016.06.020 PMid:27406858
5. Devi SA, Kiran TR. Regional responses in antioxidant system to exercise training and dietary vitamin E in aging rat brain. Neurobiol Aging. 2004; 25(4):501-8. doi:10.1016/S0197-4580(03)00112-X PMid:15013571
6. Blin O, Desnuelle C, Rascol O, Borg M, Saint Paul HP, Azulay J, et al. Mitochondrial respiratory failure in skeletal muscle from patients with Parkinson's disease and multiple system atrophy. J Neurol Sci. 1994; 125(1):95-101. doi:10.1016/0022-510X(94)90248-8 PMid:7964895
7. Heischmann S, Gano LB, Quinn K, Liang LP, Klepacki J, Christians U, et al. Regulation of kynurenine metabolism by a ketogenic diet. J Lipid Res. 2018; 59(6): 958-66. doi:10.1194/jlr.M079251 PMid:29605816 PMCid:PMC5983405
8. Alonso-Frech F, Sanahuja JJ, Rodriguez AM. Exercise and physical therapy in early management of Parkinson disease. Neurologist. 2011; 17: S47-53 doi:10.1097/NRL.0b013e31823968ec PMid:22045326
9. Fox CM, Ramig LO, Ciucci MR, Sapir S, McFarland DH, Farley BG. The science and practice of LSVT/LOUD: neural plasticity-principled approach to treating individuals with Parkinson disease and other neurological disorders. Semin Speech Lang. 2006; 27(4):283-99 doi:10.1055/s-2006-955118 PMid:17117354
10. Sutoo De, Akiyama K. Regulation of brain function by exercise. Neurobiol Dis. 2003;13(1):1-14 doi:10.1016/S0969-9961(03)00030-5 PMid:12758062
11. Zigmond MJ, Smeyne RJ. Exercise: is it a neuroprotective and if so, how does it work?. Parkinsonism Relat Disord. 2014;20:S123-7. doi:10.1016/S1353-8020(13)70030-0 PMid:24262162
12. Real CC, Garcia PC, Britto LR. Treadmill exercise prevents increase of neuroinflammation markers involved in the dopaminergic damage of the 6-OHDA Parkinson's disease model. J Mol Neurosci. 2017;63:36-49. doi:10.1007/s12031-017-0955-4 PMid:28801819
13. Yagi H, Noguchi Y, Kitamura K, Sato M. Deficiency of Vlgr1 resulted in deafness and susceptibility to audiogenic seizures while the degree of hearing impairment was not correlated with seizure severity in C57BL/6-and 129-backcrossed lines of Vlgr1 knockout mice. Neurosci Lett. 2009;461(2):190-5 doi:10.1016/j.neulet.2009.06.012 PMid:19539720
14. Landers MR, Kinney JW, Allen DN, van Breukelen F. A comparison of voluntary and forced exercise in protecting against behavioral asymmetry in a juvenile hemiparkinsonian rat model. Behav Brain Res. 2013;248: 121-8 doi:10.1016/j.bbr.2013.04.002 PMid:23597837
15. Kouda K, Iki M. Beneficial effects of mild stress (hormetic effects): dietary retriction and health. J Physiol Anthropol. 2010;29(4):127-32 doi:10.2114/jpa2.29.127 PMid:20686325
16. Martin B, Mattson MP, Maudsley S. Caloric restriction and intermittent fasting: two potential diets for successful brain aging. Ageing Res Rev) 2006;5(3):332-53. doi:10.1016/j.arr.2006.04.002 PMid:16899414 PMCid:PMC2622429
17. Greene AE, Todorova MT, McGowan R, Seyfried TN. Caloric restriction inhibits seizure susceptibility in epileptic EL mice by reducing blood glucose. Epilepsia. 2001; 42(11): 1371-8 doi:10.1046/j.1528-1157.2001.17601.x PMid:11879337
18. Wang Z, Cui Y, Wen L, Yu H, Feng J, Yuan W, et al. Dietary Restriction against Parkinson's Disease: What We Know So Far. Nutrients. 2022;14(19):4108 doi:10.3390/nu14194108 PMid:36235760 PMCid:PMC9571011
19. de Carvalho TS. Calorie restriction or dietary restriction: how far they can protect the brain against neurodegenerative diseases?.Neural Regen Res. 2022; 17 (8):1640-4 doi:10.4103/1673-5374.332126 PMid:35017409 PMCid:PMC8820686
20. Armentero M, Levandis G, Bramanti P, Nappi G, Blandini F. Dietary restriction does not prevent nigrostriatal degeneration in the 6-hydroxydopamine model of Parkinson's disease. Exp Neurol. 2008;212(2):548-51 doi:10.1016/j.expneurol.2008.04.006 PMid:18508049
21. Yazdian MR, Khalaj A, Kalhor N.The Effect of Caloric Restriction and Treadmill Exercise on Reserpine-Induced Catalepsy in a Rat Model of Parkinson's Disease. Neurosci J Shefaye Khatam. 2018;6(4):45-52. doi:10.29252/shefa.6.4.45
22. Nishio ML, Jeejeebhoy KN. Effect of malnutrition on aerobic and anaerobic performance of fast‐and slow‐twitch muscles of rats. J Parenter Enteral Nutr. 1992;16(3):219-25. doi:10.1177/0148607192016003219 PMid:1386893
23. Khalaj A, Ahmadi R. The effect of treadmill exercise on catalepsy from reserpine-induced Parkinson model in diabetic male rat. Feyz Med Sci J. 2016;20(5):397-404.
24. Shin MS, Jeong HY, An DI, Lee HY, Sung YH. Treadmill exercise facilitates synaptic plasticity on dopaminergic neurons and fibers in the mouse model with Parkinson's disease. Neurosci Lett. 2016;621:28-33. doi:10.1016/j.neulet.2016.04.015 PMid:27080424
25. Landers MR, Lopker M, Newman M, Gourlie R, Sorensen S, Vong R. A cross-sectional analysis of the characteristics of individuals with Parkinson disease who avoid activities and participation due to fear of falling. J Neurol Phys Ther. 2017;41(1):31-42. doi:10.1097/NPT.0000000000000162 PMid:27977519
26. Ziaie Bigdeli T, Peeri M, Azarbayjani MA. The Effect of Aerobic Exercise and Octopamine on the Expression of Serotonergic, Adrenergic, and Dopaminergic Pathways in the Cerebellum of Deep-Frying Oil-Treated Rats. Neurosci J Shefaye Khatam. 2022;10(2):46-56.‌ doi:10.61186/shefa.10.2.46
27. Mohammadi R, Ahmadi R. The Effect of Treadmill Exercise and Curcumin on Catalepsy Reserpine-induced Parkinsonian Male Rat Models. Anim Biol J. 2016;9(1):59-66
28. Nikokalam NN, Khosravi M, Ahmadi R, Bananej M, Majd A. Effect of treadmill exercise on catalepsy and the expression of the BDNF gene in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine -induced Parkinson in male NMRI mice. Iran J Basic Med Sci. 2020;23(4):483-93
29. Yoon MC, Shin MS, Kim TS, Kim BK, Ko IG, Sung YH, et al. Treadmill exercise suppresses nigrostriatal dopaminergic neuronal loss in 6-hydroxydopamine-induced Parkinson's rats. Neurosci Lett. 2007;423(1):12-7. doi:10.1016/j.neulet.2007.06.031 PMid:17644250
30. Shin MS, Kim TW, Lee JM, Ji ES, Lim BV. Treadmill exercise alleviates nigrostriatal dopaminergic loss of neurons and fibers in rotenone-induced Parkinson rats. J Exerc Rehabil. 2017;13:30-5 doi:10.12965/jer.1734906.453 PMid:28349030 PMCid:PMC5331996
31. Tajiri N, Yasuhara T, Shingo T, Kondo A, Yuan W, Kadota T, et al. Exercise exerts neuroprotective effects on Parkinson's disease model of rats. Brain Res. 2010;1310: 200-7 doi:10.1016/j.brainres.2009.10.075 PMid:19900418
32. Cho HS, Shin MS, Song W, Jun TW, Lim BV, Kim YP, et al. Treadmill exercise alleviates short-term memory impairment in 6-hydroxydopamine-induced Parkinson's rats. J Exerc Rehabil. 2013;9(3):354-61. doi:10.12965/jer.130048 PMid:24278884 PMCid:PMC3836534
33. Sokouti H, Mohajeri D, Nourazar MA. 6-Hydroxydopamine-Induced Neurotoxicity in Rat Model of Parkinson's Disease: Is Reversed via Anti-Oxidative Activities of Curcumin and Aerobic Exercise Therapy. Physiol Res. 2022;71(4):551-60 doi:10.33549/physiolres.934929 PMid:36165412 PMCid:PMC9616593
34. Bigham M, Mohammadipour A, Hosseini M, Malvandi AM, Ebrahimzadeh-Bideskan A. Neuroprotective effects of garlic extract on dopaminergic neurons of substantia nigra in a rat model of Parkinson's disease: motor and non‐motor outcomes. Metab Brain Dis. 2021;36:927-37. doi:10.1007/s11011-021-00705-8 PMid:33656625
35. Mattson MP, Moehl K, Ghena N, Schmaedick M, Cheng A. Intermittent metabolic switching, neuroplasticity and brain health. Nat Rev Neurosci. 2018;19(2):81-94. doi:10.1038/nrn.2017.156 PMid:29321682 PMCid:PMC5913738
36. Merghani MM, Ardah MT, Al Shamsi M, Kitada T, Haque ME. Dose-related biphasic effect of the Parkinson's disease neurotoxin MPTP, on the spread, accumulation, and toxicity of α-synuclein. Neurotoxicology. 2021;84:41-52. doi:10.1016/j.neuro.2021.02.001 PMid:33549656
37. Loos B, Klionsky DJ, Wong E. Augmenting brain metabolism to increase macro-and chaperone-mediated autophagy for decreasing neuronal proteotoxicity and aging. Prog Neurobiol. 2017;156:90-106. doi:10.1016/j.pneurobio.2017.05.001 PMid:28502807
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Movahed S, Bashiri J, Pourrazi H, Pozesh Jadidi R. The effect of 12 weeks of aerobic training and food restriction on dopaminergic and catalepsy neurons in the brain tissue of Parkinson's disease model of rats. Feyz Med Sci J 2024; 28 (2) :132-140
URL: http://feyz.kaums.ac.ir/article-1-5093-en.html


Creative Commons License
This open access journal is licensed under a Creative Commons Attribution-NonCommercial ۴.۰ International License. CC BY-NC ۴. Design and publishing by Kashan University of Medical Sciences.
Copyright ۲۰۲۳© Feyz Medical Sciences Journal. All rights reserved.
Volume 28, Issue 2 (Bimonthly 2024) Back to browse issues page
مجله علوم پزشکی فیض Feyz Medical Sciences Journal
Persian site map - English site map - Created in 0.05 seconds with 46 queries by YEKTAWEB 4660