1. Kang SS, Zhang Z, Liu X, Manfredsson FP, He L, Iuvone PM, et al. α-Synuclein binds and sequesters PIKE-L into Lewy bodies, triggering dopaminergic cell death via AMPK hyperactivation. Proc Natl Acad Sci. 2017; 114: 1183-8. doi:10.1073/ nas.1618627114 PMid:28096359 PMCid:PMC5293033 2. Ou Z, Pan J, Tang S, Duan D, Yu D, Nong H, et al. Global Trends in the Incidence, Prevalence, and Years Lived With Disability of Parkinson's Disease in 204 Countries/Territories From 1990 to 2019. Front Public Health, 2021 doi:10.3389/fpubh.2021.776847 PMid:34950630 PMCid:PMC8688697 3. Hosseinzadeh A, Baneshi MR, Sedighi B, Kermanchi J, Haghdoost AK. Estimation of Parkinson's disease prevalence and its geographical variation in Iran. J Mazandaran Univ Med Sci 2021; 31(200): 113-24 . 4. Yang J, Luo S, Zhang J, Yu T, Fu Z, Zheng Y, et al. Exosome-mediated delivery of antisense oligonucleotides targeting alpha-synuclein ameliorates the pathology in a mouse model of Parkinson's disease. Neurobiol Dis. 2021; 148: 105218. doi:10.1016/j.nbd.2020.105218 PMid:33296726 5. Miller KM, Mercado NM, Sortwell CE. Synucleinopathy-associated pathogenesis in Parkinson's disease and the potential for brain-derived neurotrophic factor. npj Parkinson's Disease. 2021; 7: 35. doi:10.1038/s41531-021-00179-6 PMid:33846345 PMCid:PMC8041900 6. Chandra S, Chen X, Rizo J, Jahn R, Sudhof TC. A broken alpha-helix in folded alpha-Synuclein. J Biol Chem. 2003; 278: 15313-8. doi:10.1074/jbc.M213128200 PMid:12586824 7. Lashuel HA, Overk CR, Oueslati A, Masliah E. The many faces of a-synuclein: from structure and toxicity to therapeutic target. Nat Rev Neurosci. 2013; 14: 38-48. doi:10.1038/nrn3406 PMid:23254192 PMCid:PMC4295774 8. Hofer A, Berg D, Asmus F, Niwar M, Ransmayr G, Riemenschneider M, et al. The role of alpha-synuclein gene multiplications in early-onset Parkinson's disease and dementia with Lewy bodies. J Neural Transm. 2005; 112: 1249-54. doi:10.1007/s00702-004-0263-3PMid:15622440 9. Baydyuk M, Xu B. BDNF signaling and survival of striatal neurons. Front Cell Neurosci. 2014 doi:10.3389/fncel.2014.00254 PMid:25221473 PMCid:PMC4147651 10. Bambah-Mukku D, Travaglia A, Chen DY, Pollonini G, Alberini CM. A positive autoregulatory BDNF feedback loop via C/EBPβ mediates hippocampal memory consolidation. J Neurosci. 2014; 34(2014): 12547-12559. doi:10.1523/JNEUROSCI.0324-14.2014 PMid:25209292 PMCid:PMC4160783 11. Cao Q, Luo S, Yao W, Qu Y, Wang N, Hong J, et al. Suppression of abnormal α-synuclein expression by activation of BDNF transcription ameliorates Parkinson's disease-like pathology. Mol Ther Nucleic Acids. 2022; 29: 1-15. doi:10.1016/j.omtn.2022.05.037 PMid:35784012 PMCid:PMC9207554 12. Yuan Y, Sun J, Zhao M, Hu J, Wang X, Du G, et al. Overexpression of alpha-synuclein down-regulates BDNF expression. Cell Mol Neurobiol. 2010; 30: 939-946. doi:10.1007/s10571-010-9523-y PMid:20405200 13. Bonanni R. Cariati I, Tarantino U, D'Arcangelo G, Tancredi V. Physical exercise and health: A focus on its protective role in neurodegenerative diseases. J Funct Morphol Kinesiol. 2022; 7: 38. doi:10.3390/jfmk7020038 PMid:35645300 PMCid:PMC9149968 14. Zhou W, Barkow JC, Freed CR. Running wheel exercise reduces α-synuclein aggregation and improves motor and cognitive function in a transgenic mouse model of Parkinson's disease. PLoS One. 2017; 12(12): e0190160. doi:10.1371/journal.pone.0190160 PMid:29272304 PMCid:PMC5741244 15. Askar MH, Hussein AM, Al-Basiony SF, Meseha RK, Metias EF, Salama MM, et al. Effects of exercise and ferulic acid on alpha synuclein and neuroprotective heat shock protein 70 in an experimental model of Parkinsonism disease. CNS Neurol Disord Drug Targets. 2019;18(2):156-69. doi:10.2174/1871527317666180816095707 PMid:30113007 16. Dutta D, Paidi RK, Raha S, Roy A, Chandra S, Pahan K. Treadmill exercise reduces α-synuclein spreading via PPARα. Cell Rep. 2022; 40(2): 111058. doi:10.1016/j.celrep.2022.111058 PMid:35830804 PMCid:PMC9308946 17. Dalir T, Gharakhanlou R, Peeri M, Matin Homaee H. The effect of four weeks of aerobic training on the expression of Sirt1, CREB and BDNF genes in hippocampus of male Wistar rats with Alzheimer's disease. J Ardabil Univers Med Sci. 2021; 20(4): 562-74. doi:10.52547/jarums.20.4.562 18. Mohseni I, Peeri M, Azarbayjan MA. Dietary supplementation with Salvia officinalis L. and aerobic training attenuates memory deficits via the CREB-BDNF pathway in amyloid beta- injected rats. J Med Plants. 2020; 19(73): 119-32. doi:10.29252/jmp.1.73.119 19. Saboury M, Kordi MR, Shabkhiz F. Effect of aerobic training before and after induction of Alzheimer on interleukin-1ß and CREB gene expression in the hippocampus of Wistar male rats. J Practical Stud Bioscience Sport. 2021; 9(20): 68-83. doi:10.22077/jpsbs.2018.1008.1316 20. Tunca U, Saygin M, Ozmen O, Aslankoc R, Yalcin A. The impact of moderate-intensity swimming exercise on learning and memory in aged rats: The role of Sirtuin-1. Iran J Basic Med Sci. 2021; 24: 1413-1420. doi:10.22038/IJBMS.2021.58145.12920 21. Karbalaee Sadeghi T, Taheri M, Irandoust K. The effect of intermittent exercise and quercetin supplementation on cognitive factors affecting BDNF and CREB in the brain hippocampus of Rats with Colon cancer. J Sport Motor Develop Lear. 2022; 14(2): 34-53. doi: 10.22059/JMLM.2022.335786.1635 22. Karimi F, Daryanoosh F, Salesi M, Nemati J. The effect of eight weeks of high intensity interval training (HIIT) on CREB and CRTC2 proteins levels in subcutaneous adipose tissue of obese rats with type 2 diabetes. Iran J Diabete Metab. 2020; 19(6): 329-36 . 23. Gibala MJ, Little JP, MacDonald MJ, Hawley JA. Physiological adaptations to low‐volume, high‐intensity interval training in health and disease. J Physiol. 2012; 590: 1077-84. doi:10.1113/jphysiol.2011.224725 PMid:22289907 PMCid:PMC3381816 24. Bayati M, Gharakhanlou R, Farzad B. Adaptations of physiological performance following high-intensity interval training. Sport Physiol. 2015; 7:15-32 25. Nagle EF, Sanders ME, Franklin BA. Aquatic high intensity interval training for cardiometabolic health: Benefits and training design. Am J Lifestyle Med. 2017; 11(1): 64-76. doi:10.1177/1559827615583640 PMid:30202315 PMCid:PMC6124844 26. Khalaj A, Ahmadi R. The effect of treadmill exercise on catalepsy from reserpine-induced Parkinson model in diabetic male rat. Feyz Med Sci J. 2016; 20(5): 397-404. 27. Hubrecht RC, Kirkwood J. The UFAW handbook on the care and management of laboratory and other research animals: John Wiley & Sons; 2010. doi:10.1002/9781444318777 28. Abbasi M, Kordi M, Daryanoosh F. The effect of eight weeks of high-intensity interval swimming training on the expression of PGC-1α and IL-6 proteins and memory function in brain hippocampus in rats with non-alcoholic steatohepatitis induced by high fat diet. J Appl Health Study Sport Physiol. 2023. In press. doi: 10.22049/jahssp.2023.28611.1552 29. Calabresi P, Lazzaro GD, Marino G, Campanelli F, Ghiglieri V. Advances in understanding the function of alpha-synuclein: implications for Parkinson's disease. Brain. 2023; 146: 3587-97. doi:10.1093/brain/awad150 PMid:37183455 PMCid:PMC10473562 30. Calabresi P, Mechelli A, Natale G, Volpicelli-Daley L, Lazzaro GD, Ghiglieri V. Alpha-synuclein in Parkinson's disease and other synucleinopathies: from overt neurodegeneration back to early synaptic dysfunction. Cell Death Disease. 2023: 14:176. doi:10.1038/s41419-023-05672-9 PMid:36859484 PMCid:PMC9977911 31. Burre J, Sharma M, Tsetsenis T, Buchman V, Etherton MR, Sudhof TC. Alpha-synuclein promotes SNARE-complex assembly in vivo and in vitro. Science. 2010; 329: 1663-7. doi:10.1126/science.1195227 PMid:20798282 PMCid:PMC3235365 32. Surmeier DJ, Obeso JA, Halliday GM. Selective neuronal vulnerability in Parkinson disease. Nat Rev Neurosci. 2017; 18: 101-13. doi:10.1038/nrn.2016.178 PMid:28104909 PMCid:PMC5564322 33. Ronzitti G, Bucci G, Emanuele M, Leo D, Sotnikova TD, Mus LV, et al. Exogenous alpha-synuclein decreases raft partitioning of Cav2.2 channels inducing dopamine release. J Neurosci. 2014; 34: 10603-15. doi:10.1523/JNEUROSCI.0608-14.2014 PMid:25100594 PMCid:PMC6802592 34. Putzier I, Kullmann PH, Horn JP, Levitan ES. Cav1.3 channel voltage dependence, not Ca2+ selectivity, drives pacemaker activity and amplifies bursts in nigral dopamine neurons. J Neurosci. 2009; 29: 15414-9. doi:10.1523/JNEUROSCI.4742-09.2009 PMid:20007466 PMCid:PMC2796195 35. Balaban RS. The role of Ca (2+) signaling in the coordination of mitochondrial ATP production with cardiac work. Biochim Biophys Acta. 2009; 1787: 1334-41. doi:10.1016/j.bbabio.2009.05.011 PMid:19481532 PMCid:PMC3177847 36. Wong YC, Luk K, Purtell K, Burke Nanni S, Stoessl AJ, Trudeau LE, et al. Neuronal vulnerability in Parkinson disease: Should the focus be on axons and synaptic terminals. Mov Disord. 2019; 34: 1406-22. doi:10.1002/mds.27823 PMid:31483900 PMCid:PMC6879792 37. Tashiro S, Caaveiro JM, Nakakido M, Tanabe A, Nagatoishi S, Tamura Y, et al. Discovery and optimization of inhibitors of the Parkinson's disease associated protein DJ-1. ACS chemical biology. 2018; 13(9): 2783-93. doi:10.1021/acschembio.8b00701 PMid:30063823 PMCid:PMC6370461 38. Zhang L, Wang J, Wang J, Yang B, He Q, Weng Q. Role of DJ-1 in immune and inflammatory diseases. Frontier Immunol. 2020; 11: 994. doi:10.3389/fimmu.2020.00994 PMid:32612601 PMCid:PMC7308417 39. Dolgacheva LP, Berezhnov AV, Fedotova EI, Zinchenko VP, Abramov AY. Role of DJ-1 in the mechanism of pathogenesis of Parkinson's disease. J Bioenergetic Biomembrane. 2019; 51: 175-88. doi:10.1007/s10863-019-09798-4 PMid:31054074 PMCid:PMC6531411 40. Pérez-Segura I, Santiago-Balmaseda A, Rodríguez-Hernández LD, Morales-Martínez A, Martínez-Becerril HA, Martínez-Gómez PA, et al. PPARs and their neuroprotective effects in Parkinson's disease: A novel therapeutic approach in α-synucleinopathy? Int J Mol Sci. 2023; 24(4): 3264. doi:10.3390/ijms24043264 PMid:36834679 PMCid:PMC9963164 41. Shen J, Xu L, Qu C, Sun H, Zhang J. Resveratrol prevents cognitive deficits induced by chronic unpredictable mild stress: Sirt1/miR-134 signalling pathway regulates CREB/BDNF expression in hippocampus in vivo and in vitro. Behav Brain Res. 2018; 349: 1-7. doi:10.1016/j.bbr.2018.04.050 PMid:29715537
|