[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Indexing Sources::
Guide for Authors::
Online Submission::
Ethics::
Articles archive::
For Reviewers::
Contact us::
::
Basic and Clinical Biochemistry and Nutrition
..
DOAJ
..
CINAHL
..
EBSCO
..
IMEMR
..
ISC
..
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
enamad
..
:: Volume 27, Issue 6 (Bimonthly 2023) ::
Feyz Med Sci J 2023, 27(6): 610-618 Back to browse issues page
Effect of eight weeks of aerobic training and garlic supplementation on gene expression of peroxisome proliferator-activated receptor-gamma coactivator 1 alpha and mitochondrial transcription factor A in brain tissue of elderly rats with Parkinson's disease
Morteza Hossienzadeh , Asiyeh Abbassi Daloii * , Seyed Ali Hoseini , Ahmad Abdi
Department of Exercise Physiology, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran , abbasi.daloii@gmail.com
Abstract:   (505 Views)
Background and Aim: Mitochondrial dysfunction in brain tissue plays a significant role in the development of Parkinson's disease. This study aimed to assess the effects of 8 weeks of aerobic training and garlic supplementation on the gene expression of Peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC1-a) and mitochondrial transcription factor A (TFAM) in the brain tissue of elderly rats with Parkinson's disease.
Methods: In this experimental study, 40 male Sprague-Dawley rats were randomly assigned to five groups: 1) healthy control (HC), 2) Parkinson's control (Res), 3) Parkinson's-aerobic exercise (AT), 4) Parkinson-garlic supplement (G), and 5) Parkinson-aerobic exercise-garlic supplement (AT+G). Parkinson's disease was induced by injecting 2 mg/kg of reserpine. Aerobic training was conducted five times a week, with each session lasting 15-48 minutes at speeds ranging from 10 to 24 meters per minute over 8 weeks. The supplement groups received a daily dose of 500 mg/kg of garlic via gavage. The gene expression of PGC1-a and TFAM in brain tissue was assessed using real-time PCR.
Results: The expression of the PGC1-a gene in the G, AT, and AT+G groups was significantly higher than that in the Res group, with the AT+G group showing significantly higher expression than the G group (P=0.001). TFAM gene expression in the AT (P=0.005) and AT+G (P=0.001) groups was significantly higher than in the Res group, with the AT+G group exhibiting higher expression compared to the G and AT groups (P=0.001).
Conclusion: The results suggest that the combination of exercise and garlic supplementation may have additive or synergistic effects on mitochondrial health and function in Parkinson's disease.
Keywords: Exercise, Garlic, Mitochondrial biogenesis, Parkinson
Full-Text [PDF 444 kb]   (289 Downloads)    
Type of Study: Research | Subject: medicine, paraclinic
Received: 2023/09/9 | Revised: 2024/02/19 | Accepted: 2023/12/24 | Published: 2024/02/13
References
1. Hirsch L, Jette N, Frolkis A, Steeves T, Pringsheim T. The incidence of parkinson's disease: a systematic review and meta-analysis. Neuroepidemiology. 2016; 46(4): 292-300. doi: 10.1159/000445751. PMID: 27105081
2. Wolff A, Schumacher NU, Pürner D, Machetanz G, Demleitner AF, Feneberg E, et al. Parkinson's disease therapy: what lies ahead? J Neural Transm (Vienna). 2023; 130(6): 793-820. doi: 10.1007/s00702-023-02641-6. PMID: 37147404; PMCID: PMC10199869
3. Dölle C, Flønes I, Nido GS, Miletic H, Osuagwu N, Kristoffersen S, et al. Defective mitochondrial DNA homeostasis in the substantia nigra in Parkinson disease. Nat Commun. 2016; 7: 13548. doi: 10.1038/ncomms13548. PMID: 27874000; PMCID: PMC5121427.
4. Jamwal S, Blackburn JK, Elsworth JD. PPARγ/PGC1α signaling as a potential therapeutic target for mitochondrial biogenesis in neurodegenerative disorders. Pharmacol Ther. 2021; 219:107705. doi: 10.1016/j.pharmthera.2020.107705 PMID:33039420 PMCID: PMC7887032
5. Jodeiri Farshbaf M, Ghaedi K, Megraw TL, Curtiss J, Shirani Faradonbeh M, Vaziri P, et al. Does PGC1α/FNDC5/BDNF Elicit the Beneficial Effects of Exercise on Neurodegenerative Disorders? Neuromolecular Med. 2016; 18(1):1-15. doi: 10.1007/s12017-015-8370-x PMID: 26611102
6. Onyango IG, Lu J, Rodova M, Lezi E, Crafter AB, Swerdlow RH. Regulation of neuron mitochondrial biogenesis and relevance to brain health. Biochim Biophys Acta. 2010; 1802(1): 228-34. doi: 10.1016/j.bbadis.2009.07.014 PMID: 19682571
7. Carta AR, Pisanu A, Carboni E. Do PPAR-Gamma Agonists Have a Future in Parkinson's Disease Therapy? Parkinsons Dis. 2011; 2011: 689181. doi: 10.4061/2011/689181 PMID: 21603186; PMCID: PMC3096077
8. Wang D, Cui WJ, Hou ZH, Gao Y. Effectiveness of different exercises in improving postural balance among Parkinson's disease patients: a systematic review and network meta-analysis. Front Aging Neurosci. 2023; 15: 1215495. doi: 10.3389/fnagi.2023.1215495 PMID: 37529009; PMCID: PMC10388555
9. Steiner JL, Murphy EA, McClellan JL, Carmichael MD, Davis JM. Exercise training increases mitochondrial biogenesis in the brain. J Appl Physiol (1985). 2011; 111(4): 1066-71. doi: 10.1152/japplphysiol.00343.2011. PMID: 21817111
10. Dietrich MO, Andrews ZB, Horvath TL. Exercise-induced synaptogenesis in the hippocampus is dependent on UCP2-regulated mitochondrial adaptation. J Neurosci. 2008; 28(42): 10766-71. doi: 10.1523/JNEUROSCI.2744-08.2008. PMID: 18923051; PMCID: PMC3865437
11. Handschin C, Spiegelman BM. Peroxisome proliferator-activated receptor gamma coactivator 1 coactivators, energy homeostasis, and metabolism. Endocr Rev. 2006; 27(7): 728-35. doi: 10.1210/er.2006-0037 PMID: 17018837
12. Rezaee Z, Marandi SM, Alaei H, Esfarjani F, Feyzollahzadeh S. Effects of Preventive Treadmill Exercise on the Recovery of Metabolic and Mitochondrial Factors in the 6-Hydroxydopamine Rat Model of Parkinson's Disease. Neurotox Res. 2019; 35(4): 908-917. doi: 10.1007/s12640-019-0004-x. PMID: 30820889
13. Bigham M, Mohammadipour A, Hosseini M, Malvandi AM, Ebrahimzadeh-Bideskan A. Neuroprotective effects of garlic extract on dopaminergic neurons of substantia nigra in a rat model of Parkinson's disease: motor and non-motor outcomes. Metab Brain Dis. 2021; 36(5): 927-37. doi: 10.1007/s11011-021-00705-8. PMID: 33656625.
14. Hosseini S, Ghasemi H, Moradi Y, Ranjbar A. The comparison of Persian shallot and garlic hydroalcoholic extracts on albumin glycation. Novel Clin Med 2022; 1(4): 197-203. doi: 10.22034/ncm.2022.352218.1053
15. Rakshit D, Nayak S, Kundu S, Angelopoulou E, Pyrgelis ES, Piperi C, et al. The Pharmacological Activity of Garlic (Allium sativum) in Parkinson’s Disease: From Molecular Mechanisms to the Therapeutic Potential. ACS Chem Neurosci. 2023; 14(6):1033-44.
16. Gureev AP, Popov VN. Nrf2/ARE Pathway as a Therapeutic Target for the Treatment of Parkinson Diseases. Neurochem Res. 2019; 44(10): 2273-9. doi: 10.1007/s11064-018-02711-2. PMID: 30617864.
17. Mischley LK, Farahnik J, Mantay L, Punzi J, Szampruch K, Ferguson T, et al. Parkinson Symptom Severity and Use of Nutraceuticals. Nutrients. 2023; 15(4): 802. doi: 10.3390/nu15040802 PMID: 36839160; PMCID: PMC9966010
18. Chen H, Zhang SM, Schwarzschild MA, Hernán MA, Ascherio A. Physical activity and the risk of Parkinson disease. Neurology. 2005; 64(4):664-9. doi: 10.1212/01.WNL.0000151960.28687.93. PMID: 15728289
19. Moradi S, Habibi A, Tabande MR, Shakerian S. Comparing the effect of 6 weeks of continuous and interval aerobic training on vascular endothelial growth factor and superoxide dismutase enzyme in hippocampus of male rats of Parkinson’s model. J Shahid Sadoughi Univ Med Sci. 2019; 27(3): 1302-12.
20. Eidi A, Eidi M, Oryan S, Esmaeili A. Effect of garlic (Allium sativum) extract on levels of urea and uric acid in normal and streptozotocin-diabetic rats. Iran J Pharm Res. 2010; 13(9-10): 624-9.
21. Wu Z, Puigserver P, Andersson U, Zhang C, Adelmant G, Mootha V, et al. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell. 1999; 98(1): 115-24. doi: 10.1016/S0092-8674(00)80611-X. PMID: 10412986
22. Abu Shelbayeh O, Arroum T, Morris S, Busch KB. PGC-1α Is a Master Regulator of Mitochondrial Lifecycle and ROS Stress Response. Antioxidants (Basel). 2023; 12(5): 1075. doi: 10.3390/antiox12051075. PMID: 37237941; PMCID: PMC10215733
23. Leick L, Wojtaszewski JF, Johansen ST, Kiilerich K, Comes G, Hellsten Y, et al. PGC-1alpha is not mandatory for exercise- and training-induced adaptive gene responses in mouse skeletal muscle. Am J Physiol Endocrinol Metab. 2008; 294(2): E463-74. doi: 1152/ajpendo.00666.2007. PMID: 18073319.
24. Morrison D, Hughes J, Della Gatta PA, Mason S, Lamon S, Russell AP, et al. Vitamin C and E supplementation prevents some of the cellular adaptations to endurance-training in humans. Free Radic Biol Med. 2015; 89: 852-62. doi: 10.1016/j.freeradbiomed.2015.10.412. PMID: 26482865.
25. Little JP, Safdar A, Wilkin GP, Tarnopolsky MA, Gibala MJ. A practical model of low-volume high-intensity interval training induces mitochondrial biogenesis in human skeletal muscle: potential mechanisms. J Physiol. 2010; 588(Pt 6): 1011-22. doi: 10.1113/jphysiol.2009.181743. PMID: 20100740; PMCID: PMC2849965
26. Lashgari AA, Azarbayjani MA, Peeri M, Nasehi M. The effect of short endurance training on the expression level of PINK-1, Parkin and PGC-1α in the heart of nicotine-sensitized rats. Med Sci 2022; 32(3): 281-92.
27. Tabari E, Mohebbi H, Karimi P, Moghaddami K, Khalafi M. The effects of interval training intensity on skeletal muscle pgc-1α in type2 diabetic male rats. Ijdld 2019; 18(4) :179-88.
28. Granata C, Oliveira RS, Little JP, Renner K, Bishop DJ. Training intensity modulates changes in PGC-1α and p53 protein content and mitochondrial respiration, but not markers of mitochondrial content in human skeletal muscle. FASEB J. 2016; 30(2): 959-70. doi: 10.1096/fj.15-276907. PMID: 26572168.
29. Perry CG, Lally J, Holloway GP, Heigenhauser GJ, Bonen A, Spriet LL. Repeated transient mRNA bursts precede increases in transcriptional and mitochondrial proteins during training in human skeletal muscle. J Physiol. 2010; 588(Pt 23): 4795-810. doi: 10.1113/jphysiol. 2010.199448. PMID: 20921196; PMCID: PMC3010147
30. Erlich AT, Tryon LD, Crilly MJ, Memme JM, Moosavi ZSM, Oliveira AN, et al. Function of specialized regulatory proteins and signaling pathways in exercise-induced muscle mitochondrial biogenesis. Integr Med Res. 2016; 5(3): 187-97. doi: 10.1016/j.imr.2016.05.003. PMID: 28462117; PMCID: PMC5390460
31. Chavanelle V, Boisseau N, Otero YF, Combaret L, Dardevet D, Montaurier C, et al. Effects of high-intensity interval training and moderate-intensity continuous training on glycaemic control and skeletal muscle mitochondrial function in db/db mice. Sci Rep. 2017; 7(1): 204. doi: 10.1038/s41598-017-00276-8. PMID: 28303003; PMCID: PMC5427962
32. Cardanho-Ramos C, Morais VA. Mitochondrial Biogenesis in Neurons: How and Where. Int J Mol Sci. 2021; 22(23): 13059. doi: 10.3390/ijms222313059. PMID: 34884861; PMCID: PMC8657637
33. Chinsomboon J, Ruas J, Gupta RK, Thom R, Shoag J, Rowe GC, et al. The transcriptional coactivator PGC-1alpha mediates exercise-induced angiogenesis in skeletal muscle. Proc Natl Acad Sci U S A. 2009; 106(50): 21401-6. doi: 10.1073/pnas.0909131106. PMID: 19966219; PMCID: PMC2795492
34. Jäger S, Handschin C, St-Pierre J, Spiegelman BM. AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha. Proc Natl Acad Sci U S A. 2007; 104(29): 12017-22. doi: 10.1073/pnas.0705070104. PMID: 17609368; PMCID: PMC1924552
35. Handschin C, Rhee J, Lin J, Tarr PT, Spiegelman BM. An autoregulatory loop controls peroxisome proliferator-activated receptor gamma coactivator 1alpha expression in muscle. Proc Natl Acad Sci U S A. 2003; 100(12): 7111-6. doi: 10.1073/pnas.1232352100. PMID: 12764228; PMCID: PMC165838
36. Delghandi MP, Johannessen M, Moens U. The cAMP signalling pathway activates CREB through PKA, p38 and MSK1 in NIH 3T3 cells. Cell Signal. 2005; 17(11): 1343-51. doi: 10.1016/j.cellsig.2005.02.003. PMID: 16125054
37. Cantó C, Jiang LQ, Deshmukh AS, Mataki C, Coste A, Lagouge M, et al. Interdependence of AMPK and SIRT1 for metabolic adaptation to fasting and exercise in skeletal muscle. Cell Metab. 2010; 11(3): 213-9. doi: 10.1016/j.cmet.2010.02.006. PMID: 20197054; PMCID: PMC3616265
38. Hamedchaman N, Riahy S, Delpisheh A, Najafzadeh Y. Exercise during coronavirus pandemic: two sides of the same coin-intensity-specific effect of physical training on innate and acquired immune system of human. Novel Clin Med 2023; 2(2): 102-108. doi: 10.22034/ncm.2023.381369.1066
39. Moosavian SP, Arab A, Paknahad Z, Moradi S. The effects of garlic supplementation on oxidative stress markers: A systematic review and meta-analysis of randomized controlled trials. Complement Ther Med. 2020; 50: 102385. doi: 10.1016/j.ctim.2020.102385. PMID: 32444050.
40. Zhang C, He X, Sheng Y, Xu J, Yang C, Zheng S, et al. Allicin Regulates Energy Homeostasis through Brown Adipose Tissue. iScience. 2020; 23(5):101113. doi: 10.1016/j.isci.2020.101113. PMID: 32413611; PMCID: PMC7226876.
41. Zahedi H, Piri Maqsood H, Rajaiyan A, Nasiri M. The effect of resveratrol supplementation and aerobic activity on SIRT1 and PGC-1α protein levels in skeletal muscle and UCP-1 in subcutaneous fat tissue of male rats. Sport physiology. 2018; 21; 10(37):167-84
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Hossienzadeh M, Abbassi Daloii A, Hoseini S A, Abdi A. Effect of eight weeks of aerobic training and garlic supplementation on gene expression of peroxisome proliferator-activated receptor-gamma coactivator 1 alpha and mitochondrial transcription factor A in brain tissue of elderly rats with Parkinson's disease. Feyz Med Sci J 2023; 27 (6) :610-618
URL: http://feyz.kaums.ac.ir/article-1-4979-en.html


Creative Commons License
This open access journal is licensed under a Creative Commons Attribution-NonCommercial ۴.۰ International License. CC BY-NC ۴. Design and publishing by Kashan University of Medical Sciences.
Copyright ۲۰۲۳© Feyz Medical Sciences Journal. All rights reserved.
Volume 27, Issue 6 (Bimonthly 2023) Back to browse issues page
مجله علوم پزشکی فیض Feyz Medical Sciences Journal
Persian site map - English site map - Created in 0.05 seconds with 46 queries by YEKTAWEB 4660