[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Indexing Sources::
Guide for Authors::
Online Submission::
Ethics::
Articles archive::
For Reviewers::
Contact us::
::
Basic and Clinical Biochemistry and Nutrition
..
DOAJ
..
CINAHL
..
EBSCO
..
IMEMR
..
ISC
..
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
enamad
..
:: Volume 27, Issue 5 (Bimonthly 2023) ::
Feyz 2023, 27(5): 473-480 Back to browse issues page
Changes in protein expression of NMDA glutamate receptor and Pannexin-1 channel in gastric antrum tissue of rats with type 2 diabetes and treated with insulin
Hossein Rezazadeh Mehrizi , Nepton Soltani , Nasrin Mehranfard , Maedeh Ghasemi
Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran , ghasemi.m@med.mui.ac.ir
Abstract:   (417 Views)
Background and Aim: Evidence shows that glutamate receptors play a role in the occurrence of gastrointestinal damage caused by diabetes. Therefore, in this study, the protein expression pattern of glutamate receptor N-methyl-D-aspartate (NMDA) and pannexin-1 (Panx-1) channel, which has an important functional relationship with glutamate receptors, in the stomach of type 2 diabetic rats were investigated. We also assessed the effect of long-term treatment with insulin on the possible changes of the mentioned proteins.
Methods: In this experimental study, 18 male Wistar rats weighing approximately 80-90 grams were randomly assigned into 3 groups (6 rats each): 1) control with standard diet, 2) type 2 diabetes: high-fat diet for 3 months + single dose of streptozotocin (35 mg/kg), and 3) type 2 diabetes + insulin treatment. The protein content of NMDA receptor as well as Panx-1 was detected using western blot method and compared among groups.
Results: In the stomach of type 2 diabetic rats, the expression of Panx-1 protein was significantly decreased (P<0.001), while the expression of NMDA receptor (P<0.001) showed a significant increase. Insulin treatment improved the expression level of Panx-1 protein in diabetic rats, in addition, insulin treatment decreased the expression level of NMDA receptor in diabetic rats (P<0.05).
Conclusion: The present findings indicate important changes in protein levels of NMDA receptor and Panx-1 channel and their possible role in the occurrence of sensory-motor and secretory damage related to diabetes. The correction of the above changes may play a role in improving the functional damage caused by type 2 diabetes.
Keywords: Type 2 diabetes, NMDA receptor, Pannexin-1 channel
Full-Text [PDF 503 kb]   (270 Downloads)    
Type of Study: Research | Subject: medicine, paraclinic
Received: 2023/08/6 | Revised: 2023/12/13 | Accepted: 2023/10/17 | Published: 2023/12/10
References
1. Zavaleta MJC, Yovera JGG, Marreros DMM, Robles L del PR, Taype KRP, Gálvez KNS, et al. Diabetic gastroenteropathy: An underdiagnosed complication. World J Diabetes [Internet]. 2021 Jun 6 [cited 2023 Aug 6]; 12(6):794. Available at: /pmc/articles/PMC8192258/
2. Yang X, Lou J, Shan W, Ding J, Jin Z, Hu Y, et al. Pathophysiologic Role of Neurotransmitters in Digestive Diseases. Front Physiol [Internet]. 2021 Jun 14 [cited 2023 Aug 6];12:567650. Available at: /pmc/articles/PMC8236819/
3. Choi WM, Kim HH, Kim MH, Cinar R, Yi HS, Eun HS, et al. Glutamate Signaling in Hepatic Stellate Cells Drives Alcoholic Steatosis. Cell Metab [Internet]. 2019 Nov 5 [cited 2023 Aug 6]; 30(5): 877-889.e7. Available at: https://pubmed.ncbi.nlm.nih.gov/ 31474565/
4. Shao L, Liu Y, Xiao J, Wang Q, Liu F, Ding J. Activating metabotropic glutamate receptor‑7 attenuates visceral hypersensitivity in neonatal maternally separated rats. Int J Mol Med [Internet]. 2019 Feb 1 [cited 2023 Aug 6];43(2):761–70. Available at: https://pubmed.ncbi.nlm.nih.gov/ 30569115/
5. Ishibashi-Shiraishi I, Shiraishi S, Fujita S, Ogawa S, Kaneko M, Suzuki M, et al. L-Arginine L-Glutamate Enhances Gastric Motor Function in Rats and Dogs and Improves Delayed Gastric Emptying in Dogs. J Pharmacol Exp Ther [Internet]. 2016 Nov 1 [cited 2023 Aug 6]; 359(2): 238–46. Available at: https://pubmed.ncbi.nlm.nih.gov/ 27535977/
6. Peterlik D, Stangl C, Bauer A, Bludau A, Keller J, Grabski D, et al. Blocking metabotropic glutamate receptor subtype 5 relieves maladaptive chronic stress consequences. Brain Behav Immun [Internet]. 2017 Jan 1 [cited 2023 Aug 6];59:79–92. Available at: https://pubmed.ncbi.nlm.nih.gov/27524668/
7. Tsai LH, Lee YJ, Wu JY. Role of N-methyl-D-aspartate receptors in gastric mucosal blood flow induced by histamine. J Neurosci Res [Internet]. 2004 Sep 1 [cited 2023 Aug 6]; 77(5):730–8. Available at: https://pubmed.ncbi.nlm.nih.gov/ 15352220/
8. Milusheva EA, Kuneva VI, Itzev DE, Kortezova NI, Sperlagh B, Mizhorkova ZN. Glutamate stimulation of acetylcholine release from myenteric plexus is mediated by endogenous nitric oxide. Brain Res Bull. 2005; 66(3):229–34.
9. Bravo D, Zepeda-Morales K, Maturana CJ, Retamal JS, Hernández A, Pelissier T, et al. NMDA and P2X7 Receptors Require Pannexin 1 Activation to Initiate and Maintain Nociceptive Signaling in the Spinal Cord of Neuropathic Rats. Int J Mol Sci [Internet]. 2022; 23(12).Available at: /pmc/articles/PMC9223805/
10. Navis KE, Fan CY, Trang T, Thompson RJ, Derksen DJ. Pannexin 1 Channels as a Therapeutic Target: Structure, Inhibition, and Outlook. ACS Chem Neurosci [Internet]. 2020; 11(15): 2163–72. Available at: https://pubmed.ncbi.nlm.nih.gov/ 32639715/
11. Yeung AK, Patil CS, Jackson MF. Pannexin-1 in the CNS: Emerging concepts in health and disease. J Neurochem [Internet]. 2020; 154(5): 468–85. Available at: https://onlinelibrary.wiley.com/doi/full/ 10.1111/jnc.15004
12. Seo JH, Dalal MS, Contreras JE. Pannexin-1 Channels as Mediators of Neuroinflammation. Int J Mol Sci [Internet]. 2021; 22(10):5189. Available at: /pmc/articles/PMC8156193/
13. Crespo Yanguas S, Willebrords J, Johnstone SR, Maes M, Decrock E, De Bock M, et al. Pannexin1 as mediator of inflammation and cell death. Biochim Biophys Acta - Mol Cell Res. 2017; 1864(1): 51–61.
14. Gulbransen BD, Bashashati M, Hirota SA, Gui X, Roberts JA, MacDonald JA, et al. Activation of neuronal P2X7 receptor-pannexin-1 mediates death of enteric neurons during colitis. Nat Med [Internet]. 2012; 18(4): 600–4. Available at: https://pubmed.ncbi.nlm.nih.gov/ 22426419/
15. Diezmos EF, Markus I, Perera DS, Gan S, Zhang L, Sandow SL, et al. Blockade of Pannexin-1 Channels and Purinergic P2X7 Receptors Shows Protective Effects Against Cytokines-Induced Colitis of Human Colonic Mucosa. Front Pharmacol [Internet]. 2018; 9(AUG). Available at: https://pubmed.ncbi.nlm.nih.gov/ 30127744/
16. Zhang CM, Huang X, Lu HL, Meng XM, Song NN, Chen L, et al. Diabetes-induced damage of gastric nitric oxide neurons mediated by P2X7R in diabetic mice. Eur J Pharmacol. 2019; 851: 151–60.
17. Ying W, Zheng K, Wu Y, Wang O. Pannexin 1 Mediates Gastric Cancer Cell Epithelial-Mesenchymal Transition via Aquaporin 5. Biol Pharm Bull [Internet]. 2021; 44(8): 1111–9. Available at: https://pubmed.ncbi.nlm.nih.gov/ 34135208/
18. 18. Wu LY, Ye ZN, Zhou CH, Wang CX, Xie G Bin, Zhang XS, et al. Roles of Pannexin-1 Channels in Inflammatory Response through the TLRs/NF-Kappa B Signaling Pathway Following Experimental Subarachnoid Hemorrhage in Rats. Front Mol Neurosci [Internet]. 2017; 10.Available at: /pmc/articles/PMC5459922/
19. Hernandez CA, Eliseo E, Hernandez CA, Eliseo E. The Role of Pannexin-1 Channels in HIV and NeuroHIV Pathogenesis. Cells 2022, Vol 11, Page 2245 [Internet]. 2022; 11(14): 2245. Available at: https://www.mdpi.com/2073-4409/11/14/2245/htm
20. Kroon C, Breuer L, Jones L, An J, Akan A, Ali EAM, et al. Blind spots on western blots: Assessment of common problems in western blot figures and methods reporting with recommendations to improve them. PLoS Biol [Internet]. 2022; 20(9): Available at: https://pubmed.ncbi.nlm.nih.gov/36095010/
21. Rezazadeh H, Sharifi MR, Sharifi M, Soltani N. Gamma-aminobutyric acid attenuates insulin resistance in type 2 diabetic patients and reduces the risk of insulin resistance in their offspring. Biomed Pharmacother. 2021; 138: 111440.
22. Azpiroz F, Malagelada C. Diabetic neuropathy in the gut: pathogenesis and diagnosis. Diabetologia [Internet]. 2016; 59(3): 404–8. Available at: https://link.springer.com/article/10. 1007/s00125-015-3831-1
23. Golovynska I, Beregova T V., Falalyeyeva TM, Stepanova LI, Golovynskyi S, Qu J, et al. Peripheral N-methyl-D-aspartate receptor localization and role in gastric acid secretion regulation: immunofluorescence and pharmacological studies. Sci Rep [Internet]. 2018 Dec 1 [cited 2023 Aug 6];8(1). Available from: /pmc/articles/PMC5945873/
24. Tsai LH, Wu JY. Glutamate receptors in the stomach and their implications. Glutamate Recept Peripher Tissue Excit Transm Outs CNS [Internet]. 2005 [cited 2023 Aug 6];179–90. Available from: https://link.springer.com/chapter/10.1007/0-306-48644-X_10
25. Golovynska I, Beregova T V., Falalyeyeva TM, Stepanova LI, Golovynskyi S, Qu J, et al. Peripheral N-methyl-D-aspartate receptor localization and role in gastric acid secretion regulation: immunofluorescence and pharmacological studies. Sci Reports 2018 81 [Internet]. 2018 May 10 [cited 2023 May 16];8(1):1–11. Available at: https://www.nature.com/articles/s41598-018-25753-6
26. Wu CS, Lu YJ, Li HP, Hsueh C, Lu CY, Leu YW, et al. Glutamate receptor, ionotropic, kainate 2 silencing by DNA hypermethylation possesses tumor suppressor function in gastric cancer. Int J Cancer [Internet]. 2010 Jun 1 [cited 2023 Aug 6];126(11):2542–52. Available at: https://onlinelibrary.wiley.com/doi/full/10.1002/ijc.24958
27. Huang XT, Yang JX, Wang Z, Zhang CY, Luo ZQ, Liu W, et al. Activation of N-methyl-D-aspartate receptor regulates insulin sensitivity and lipid metabolism. 2021 [cited 2023 Aug 6];11(5):2247–62. Available at: http://www.thno.org// creativecommons.org/licenses/by/4.0/
28. Li S, Bjelobaba I, Stojilkovic SS. Interactions of Pannexin1 Channels with Purinergic and NMDA Receptor Channels. Biochim Biophys Acta [Internet]. 2018 Jan 1 [cited 2023 Aug 6]; 1860(1): 166. Available from: /pmc/articles/PMC5628093/
29. Thompson RJ. Pannexin channels and ischaemia. J Physiol [Internet]. 2015; 593(16):3463–70. Available at: https://pubmed.ncbi.nlm.nih.gov/ 25384783/
30. Kovalzon VM, Moiseenko LS, Ambaryan AV, Kurtenbach S, Shestopalov VI, Panchin YV. Sleep-wakefulness cycle and behavior in pannexin1 knockout mice. Behav Brain Res [Internet]. 2017; 318: 24–7. Available at: https://pubmed.ncbi.nlm.nih.gov/ 27769744/
31. Adamson SE, Meher AK, Chiu Y hsin, Sandilos JK, Oberholtzer NP, Walker NN, et al. Pannexin 1 is required for full activation of insulin-stimulated glucose uptake in adipocytes. Mol Metab [Internet]. 2015; 4(9): 610–8. Available at: https://pubmed.ncbi.nlm.nih.gov/ 26413467/
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Rezazadeh Mehrizi H, Soltani N, Mehranfard N, Ghasemi M. Changes in protein expression of NMDA glutamate receptor and Pannexin-1 channel in gastric antrum tissue of rats with type 2 diabetes and treated with insulin. Feyz 2023; 27 (5) :473-480
URL: http://feyz.kaums.ac.ir/article-1-4937-en.html


Creative Commons License
This open access journal is licensed under a Creative Commons Attribution-NonCommercial ۴.۰ International License. CC BY-NC ۴. Design and publishing by Kashan University of Medical Sciences.
Copyright ۲۰۲۳© Feyz Medical Sciences Journal. All rights reserved.
Volume 27, Issue 5 (Bimonthly 2023) Back to browse issues page
مجله علوم پزشکی فیض Feyz Medical Sciences Journal
Persian site map - English site map - Created in 0.05 seconds with 46 queries by YEKTAWEB 4645