1. Zheng Y, Ley SH, Hu FB. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol 2018; 14(2): 88-98. doi:10.1038/nrendo.2017.151 PMid:29219149 2. Jafarvand E, Ataey A, Edalati S. Epidemiology and Death Trends Due to Diabetes in Iran. Quarterly Horizon Med Sci 2021; 27(2): 198-213. doi:10.32598/hms.27.2.2764.1 3. Mezil SA, Abed BA. Complication of diabetes mellitus. Ann Rom Soc Cell Biol 2021: 1546-56. 4. Simó R, Hernández C. Treatment of diabetes mellitus: general goals, and clinical practice management. Revista Espanola de Cardiologia 2002; 55(8): 845-60. doi:10.1016/S0300-8932(02)76714-6 PMid:12199981 5. Sharma A, Mittal S, Aggarwal R, Chauhan MK. Diabetes and cardiovascular disease: inter-relation of risk factors and treatment. Futur J Pharm Sci 2020; 6(1): 1-19. doi:10.1186/s43094-021-00395-0 6. Fiuza-Luces C, Santos-Lozano A, Joyner M, Carrera-Bastos P, Picazo O, Zugaza JL, et al. Exercise benefits in cardiovascular disease: beyond attenuation of traditional risk factors. Nat Rev Cardiol 2018; 15(12): 731-43. doi:10.1038/s41569-018-0065-1 PMid:30115967 7. Asano RY, Sales MM, Browne RAV, Moraes JFVN, Júnior HJC, Moraes MR, et al. Acute effects of physical exercise in type 2 diabetes: a review. World J Diabetes 2014; 5(5): 659. doi:10.4239/wjd.v5.i5.659 PMid:25317243 PMCid:PMC4138589 8. Pinckard K, Baskin KK, Stanford KI. Effects of exercise to improve cardiovascular health. Front Cardiovasc Med 2019; 6: 69. doi:10.3389/fcvm.2019.00069 PMid:31214598 PMCid:PMC6557987 9. Wu N, Bredin SS, Jamnik VK, Koehle MS, Guan Y, Shellington EM, et al. Association between physical activity level and cardiovascular risk factors in adolescents living with type 1 diabetes mellitus: a cross-sectional study. Cardiovasc Diabetol 2021; 20(1): 1-11. doi:10.1186/s12933-021-01255-0 PMid:33712025 PMCid:PMC7955612 10. Yang R, Jia Q, Liu XF, Ma SF. Effect of genistein on myocardial fibrosis in diabetic rats and its mechanism. Molecular Med Reports 2018;17(2): 2929-36. doi:10.3892/mmr.2017.8268 11. Godarzi F, Nikbakht H, abednatanzi H, Ebrahim K, Ghazalian F. Comparison the effect of aerobic and resistance training on some oxidative parameters and TGF-β in cardiac tissue of elderly rats. Razi J Med Sci 2020; 27(3): 93-100. 12. Saadat S, Noureddini M, Mahjoubin-Tehran M, Nazemi S, Shojaie L, Aschner M, et al. Pivotal role of TGF-β/Smad signaling in cardiac fibrosis: non-coding RNAs as effectual players. Front Cardiovasc Med 2021; 7: 588347. doi:10.3389/fcvm.2020.588347 PMid:33569393 PMCid:PMC7868343 13. Samiei A, Behpour N, Tadibi V, Fathi R. Effect of Eight Weeks of Aerobic Training on Some Myocardial Fibrosis Indices in Cardiac Muscle of Diabetic Rats. Ann Appl Sport Sci 2018; 6(4): 1-8. doi:10.29252/aassjournal.6.4.1 14. Livak KJ, Schmittgen TD. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods 2001; 25(4): 402-8. doi:10.1006/meth.2001.1262 PMid:11846609 15. Howarth F, Jacobson M, Shafiullah M, Adeghate E. Long‐term effects of streptozotocin‐induced diabetes on the electrocardiogram, physical activity and body temperature in rats. Experimental Physiol 2005; 90(6): 827-35. doi:10.1113/expphysiol.2005.031252 PMid:16091403 16. Zafar M, Naqvi SN-u-H. Effects of STZ-induced diabetes on the relative weights of kidney, liver and pancreas in albino rats: a comparative study. Int J Morphol 2010; 28(1). doi:10.4067/S0717-95022010000100019 17. Pournaghi P, Sadrkhanlou RA, Hasanzadeh S, Foroughi A, editors. An investigation on body weights, blood glucose levels and pituitary-gonadal axis hormones in diabetic and metformin-treated diabetic female rats. Veterinary research forum; 2012: Faculty of Veterinary Medicine, Urmia University, Urmia, Iran. 18. Mohammadi E, Fathi M, Chehel Cheraghi F, Nazari A. The effect of six weeks of endurance training and Empagliflozin consumption on heart weight and electrical changes of the heart in male Wistar rat's diabetic with STZ. Sci Magazine Yafte 2021; 23(0): 199-210. 19. Thakur V, Alcoreza N, Delgado M, Joddar B, Chattopadhyay M. Cardioprotective effect of glycyrrhizin on myocardial remodeling in diabetic rats. Biomolecules 2021; 11(4): 569. doi:10.3390/biom11040569 PMid:33924458 PMCid:PMC8069839 20. Wang X, Mu C, Mu T, Gao L, Zhao Y, Zhang Y, et al. Effects of Tongxinluo on myocardial fibrosis in diabetic rats. J Chinese Med Assoc 2016; 79(3): 130-6. doi:10.1016/j.jcma.2015.06.022 PMid:26775602 21. Wu H, Li GN, Xie J, Li R, Chen QH, Chen JZ, et al. Resveratrol ameliorates myocardial fibrosis by inhibiting ROS/ERK/TGF-β/periostin pathway in STZ-induced diabetic mice. BMC Cardiovasc Disord 2016; 16(1): 1-10. doi:10.1186/s12872-015-0169-z PMid:26750922 PMCid:PMC4707778 22. Habibian M, Khosravi M. The effect of 8 weeks regular swimming exercise on the cardiac levels of matrix mettaloproteinase-2 and transforming growth factor-β1 in diabetic rats. Iran J Diabetes Lipid Disord 2016; 15(2): 67-74. 23. Ma Y, Kuang Y, Bo W, Liang Q, Zhu W, Cai M, et al. Exercise training alleviates cardiac fibrosis through increasing fibroblast growth factor 21 and regulating TGF-β1-Smad2/3-MMP2/9 signaling in mice with myocardial infarction. Int J Mol Sci 2021; 22(22): 12341. doi:10.3390/ijms222212341 PMid:34830222 PMCid:PMC8623999 24. Liu Y, Liu X, Deng P, Ji W, Li J. Exercise effects on myocardial type I, III collagen and angiotensin II/transforming growth factor beta1/Smad2 pathway in diabetic myocardial fibrosis rats. Chinese J Tissue Engineering Res 2022; 26(26): 4173. 25. Chen X, Liu B, Yang K, Lu P, Yu H. Treadmill exercise improves the myocardial fibrosis of spontaneous type 2 diabetic mice: an exploration on the functional pathway. Chinese J Tissue Engineering Res 2022; 26(8): 1210. 26. Farzanegi P. The effect of regular swim training with two different time periods on serum levels of NO, VEGF, and TGF-β1 in diabetic male rats. Pathobiol Res 2017; 20(2): 37-48. 27. Szabó R, Karácsonyi Z, Börzsei D, Juhász B, Al-Awar A, Török S, et al. Role of exercise-induced cardiac remodeling in ovariectomized female rats. Oxid Med Cell Longev 2018; 2018. doi:10.1155/2018/6709742 PMid:29636852 PMCid:PMC5831964 28. Sakakibara M, Hirashiki A, Cheng XW, Bando Y, Ohshima K, Okumura T, et al. Association of diabetes mellitus with myocardial collagen accumulation and relaxation impairment in patients with dilated cardiomyopathy. Diabetes Res Clin Practice 2011; 92(3): 348-55. doi:10.1016/j.diabres.2011.02.023 PMid:21414680 29. Mohamad HE, Askar ME, Hafez MM. Management of cardiac fibrosis in diabetic rats; the role of peroxisome proliferator activated receptor gamma (PPAR-gamma) and calcium channel blockers (CCBs). Diabetol Metab Syndr 2011; 3(1): 1-12. doi:10.1186/1758-5996-3-4 PMid:21450068 PMCid:PMC3074550 30. Hinderer S, Schenke-Layland K. Cardiac fibrosis-A short review of causes and therapeutic strategies. Adv Drug Deliv Rev 2019; 146: 77-82. doi:10.1016/j.addr.2019.05.011 PMid:31158407 31. Li S, Liang M, Gao D, Su Q, Laher I. Changes in titin and collagen modulate effects of aerobic and resistance exercise on diabetic cardiac function. J CardiovascTranslational Res 2019; 12(5): 404-14. doi:10.1007/s12265-019-09875-4 PMid:30820865 32. Golbashi R, Gaeini A, Kordi MR, Aboutaleb N, Ghardashi Afousi A. Effect of one period of high-intensity interval training on myocardial collagen-1 and TGF-β1 and cardiac function in post ischemia-reperfusion rats. Daneshvar Med 2018; 26(2): 65-74. 33. Melo SF, Fernandes T, Baraúna VG, Matos KC, Santos AA, Tucci PJ, et al. Expression of microRNA-29 and collagen in cardiac muscle after swimming training in myocardial-infarcted rats. Cell Physiol Biochem 2014; 33(3): 657-69. doi:10.1159/000358642 PMid:24642957 34. Zheng J, Cheng J, Zheng S, Zhang L, Guo X, Zhang J, et al. Physical exercise and its protective effects on diabetic cardiomyopathy: what is the evidence? Frontiers Endocrinol 2018; 9: 729. doi:10.3389/fendo.2018.00729 PMid:30559720 PMCid:PMC6286969
|