1. Bohring C, Krause E, Habermann B, Krause W. Isolation and identification of sperm membrane antigens recognized by antisperm antibodies, and their possible role in immunological infertility disease. Mol Hum Reprod 2001; 7(2): 113-8. 2. [20] Silina K, Zayakin P, Kalnina Z, Ivanova L, Meistere I, Endzelinš E, et al. Sperm-associated antigens as targets for cancer immunotherapy: expression pattern and humoral immune response in cancer patients. J Immunother 2011; 34(1): 28-44. 3. Zhou X, Jia L, Sun Y, Xu L, Wang X, Tang Q. Sperm‑associated antigen 5 is a potential biomarker for poor prognosis in breast cancer. Oncol Lett 2019; 17(1): 1146-52. 4. Zhen Z, Dong F, Shen H, Wang QG, Yang L, Hu J. MiR-524 inhibits cell proliferation and induces cell apoptosis in thyroid cancer via targeting SPAG9. Eur Rev Med Pharmacol Sci 2018; 22(12): 3812-8. 5. Ren B, Zou G, He J, Huang Y, Ma G, Xu G, et al. Sperm-associated antigen 9 is upregulated in hepatocellular carcinoma tissue and enhances QGY cell proliferation and invasion in vitro. Oncol Lett 2018; 15(1): 415-22. 6. Li D, Yang M, Liao A, Zeng B, Liu D, Yao Y, et al. Linc00483 as ce RNA regulates proliferation and apoptosis through activating MAPK s in gastric cancer. J Cell Mol Med 2018; 22(8):3875-86. 7. Rižner TL. Discovery of biomarkers for endometrial cancer: current status and prospects. Expert Rev Mol Diagn 2016; 16(12): 1315-36. 8. Ren B, Luo S, Xu F, Zou G, Xu G, He J, et al. The expression of DAMP proteins HSP70 and cancer-testis antigen SPAG9 in peripheral blood of patients with HCC and lung cancer. Cell Stress Chaperones 2017; 22(2): 237-44. 9. Yang X, Zhou W, Liu S. SPAG9 controls the cell motility, invasion and angiogenesis of human osteosarcoma cells. Experimental Therapeutic Med 2016; 11(2): 637-44. 10. Ren B, Wei X, Zou G, He J, Xu G, Xu F, et al. Cancer testis antigen SPAG9 is a promising marker for the diagnosis and treatment of lung cancer. Oncol Rep 2016; 35(5): 2599-605. 11. Yan Q, Lou G, Qian Y, Qin B, Xu X, Wang Y, et al. SPAG9 is involved in hepatocarcinoma cell migration and invasion via modulation of ELK1 expression. Onco Targets Ther 2016; 9: 1067. 12. Jagadish N, Gupta N, Agarwal S, Parashar D, Sharma A, Fatima R, et al. Sperm-associated antigen 9 (SPAG9) promotes the survival and tumor growth of triple-negative breast cancer cells. Tumour Biol 2016; 37(10): 13101-10. 13. Ha JH, Yan M, Gomathinayagam R, Jayaraman M, Husain S, Liu J, et al. Aberrant expression of JNK-associated leucine-zipper protein, JLP, promotes accelerated growth of ovarian cancer. Oncotarget 2016; 7(45): 72845-59. 14. Pan J, Yu H, Guo Z, Liu Q, Ding M, Xu K, et al. Emerging role of sperm-associated antigen 9 in tumorigenesis. Biomed Pharmacother 2018; 103: 1212-6. 15. Di Santo M, Tarozzi N, Nadalini M, Borini A. Human Sperm Cryopreservation: Update on Techniques, Effect on DNA Integrity, and Implications for ART. Adv Urol 2012; 2012: 854837. 16. Valcarce DG, Carton-Garcia F, Herraez MP, Robles V. Effect of cryopreservation on human sperm messenger RNAs crucial for fertilization and early embryo development. Cryobiology 2013; 67(1): 84-90. 17. Valcarce DG, Carton-Garcia F, Riesco MF, Herraez MP, Robles V. Analysis of DNA damage after human sperm cryopreservation in genes crucial for fertilization and early embryo development. Andrology 2013; 1(5): 723-30. 18. Salehi M, Mahdavi AH, Sharafi M, Shahverdi A. Cryopreservation of rooster semen: Evidence for the epigenetic modifications of thawed sperm. Theriogenology 2020; 142: 15-25. 19. Bogle O, Kumar K, Attardo‐Parrinello C, Lewis S, Estanyol J, Ballesca J, et al. Identification of protein changes in human spermatozoa throughout the cryopreservation process. Andrology 2017; 5(1): 10-22. 20. Cui Z, Sharma R, Agarwal A. Proteomic analysis of mature and immature ejaculated spermatozoa from fertile men. Asian J Androl 2017; 18(5): 735. 21. Organization WH. WHO laboratory manual for the examination and processing of human semen. 2010. 22. Beydola T, Sharma RK, Lee W, Agarwal A. Sperm preparation and selection techniques. Male Infertility Practice 2013; p. 244-51. 23. Agha-Rahimi A, Khalili MA, Nabi A, Ashourzadeh S. Vitrification is not superior to rapid freezing of normozoospermic spermatozoa: effects on sperm parameters, DNA fragmentation and hyaluronan binding. Reproductive Biomedicine Online 2014; 28(3): 352-8. 24. Mazzilli F, Rossi T, Sabatini L, Pulcinelli FM, Rapone S, Dondero F, et al. Human sperm cryopreservation and reactive oxygen species (ROS) production. Acta Eur Fertil 1995; 26(4): 145-8. 25. Valcarce D, Cartón‐García F, Riesco M, Herráez M, Robles V. Analysis of DNA damage after human sperm cryopreservation in genes crucial for fertilization and early embryo development. Andrology 2013; 1(5): 723-30. 26. Bu H, Wedel S, Cavinato M, Jansen-Durr P. MicroRNA Regulation of Oxidative Stress-Induced Cellular Senescence. Oxid Med Cell Longev 2017; 2017: 2398696. 27. Guo W, Lian S, Zhen L, Zang S, Chen Y, Lang L, et al. The Favored Mechanism for Coping with Acute Cold Stress: Upregulation of miR-210 in Rats. Cell Physiol Biochem 2018; 46(5): 2090-102. 28. Zhang H, Li S, Yang X, Qiao B, Zhang Z, Xu Y. miR-539 inhibits prostate cancer progression by directly targeting SPAG5. J Exp Clin Cancer Res 2016; 35(1): 60. 29. Liu G, Liu S, Cao G, Luo W, Li P, Wang S, et al. SPAG5 contributes to the progression of gastric cancer by upregulation of Survivin depend on activating the wnt/β-catenin pathway. Experimental Cell Res 2019; 379(1): 83-91. 30. Abdel-Fatah TM, Agarwal D, Liu D-X, Russell R, Rueda OM, Liu K, et al. SPAG5 as a prognostic biomarker and chemotherapy sensitivity predictor in breast cancer: a retrospective, integrated genomic, transcriptomic, and protein analysis. Lancet Oncol 2016; 17(7): 1004-18.
|