:: دوره 26، شماره 4 - ( دوماه نامه 1401 ) ::
جلد 26 شماره 4 صفحات 397-388 برگشت به فهرست نسخه ها
اثر ورزش هوازی بر سطوح لون پروتئاز 1 و پروتئین شوک گرمایی 70 در موش‌های دارای دیابت نوع دو
مهرزاد شعبانی ، وحید ولیپور دهنو* ، محمدرضا تابنده ، مهدیه ملانوری شمسی
گروه علوم ورزشی، دانشکده ادبیات و علوم انسانی، دانشگاه لرستان، خرم‌آباد، ایران ، valipour.v@lu.ac.ir
چکیده:   (218 مشاهده)
سابقه و هدف: پروتئین شوک گرمایی 70 (HSP70) و لون پروتئاز یک (LONP1) به‌عنوان شاخص استرس میتوکندریایی در نظر گرفته می‌شود که برای زنده‌ماندن سلول ضروری است. بنابراین، هدف این پژوهش بررسی تأثیر ورزش استقامتی بر تغییرات HSP70 و LONP1 در موش‌های دیابتی بود.
مواد و روش‌ها: تحقیق حاضر از نوع تجربی بود که در آن 30 سر موش آزمایشگاهی نر بالغ به‌طور تصادفی و یکسان (ده‌تایی) به گروه‌های کنترل (C)، دیابتی (D) و دیابتی - ورزش (DE) تقسیم شدند. دیابت به‌وسیله تزریق درون‌صفاقی استرپتوزوتوسین القا شد. تمرین استقامتی برای 8 هفته انجام شد. 48 ساعت پس از آخرین جلسه تمرین، عضله EDL موش‌ها جدا شد. مقادیر گلوکز، انسولین و HSP70، LONP1 و شاخص مقاومت به انسولین اندازه‌گیری شد.
نتایج: سطوح انسولین، گلوکز خون و مقاومت به انسولین در گروه DE نسبت به گروه D به‌شکل معناداری کاهش یافت (0/05>P). همچنین، سطوح پروتئین HSP70 گروه DE نسبت به گروه D به‌شکل معنا‌داری افزایش یافت (0/05>P) و در گروه D نسبت به گروه C به‌شکل معناداری کاهش یافت (0/05>P). همچنین تمرین باعث افزایش معنا‌دار بیان سطوح LONP1 در گروه DE در مقایسه با گروه D شد (0/05>P). همچنین سطوح LONP1 در گروه D در مقایسه با گروه C به‌شکل معناداری افزایش یافت (0/05>P).
نتیجه‌گیری: گزارش‌ها نشان می‌دهد که دیابت می‌تواند سطوح HSP70 را کاهش و LONP1 را افزایش دهد. همچنین، ورزش استقامتی با افزایش بیان پروتئین‌های HSP70  و LONP1 می‌تواند عملکرد میتوکندری را که در دیابت دچار اختلال شده است، تقویت کند. همچنین باعث بهبود شاخص مقاومت به انسولین شود.
واژه‌های کلیدی: ورزش هوازی، دیابت، مقاومت به انسولین، HSP70، LONP1
متن کامل [PDF 471 kb]   (72 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: medicine, paraclinic
دریافت: 1401/4/10 | پذیرش: 1401/6/13 | انتشار: 1401/7/4
فهرست منابع
1. Rowles JE, Keane KN, Gomes Heck T, Cruzat V, Verdile G, Newsholme P. Are heat shock proteins an important link between type 2 diabetes and Alzheimer disease? Int J Mol Med Sci 2020; 21(21): 8204.
2. Fujimaki S, Kuwabara T. Diabetes-induced dysfunction of mitochondria and stem cells in skeletal muscle and the nervous system. Int J Mol Med Sci 2017; 18(10): 2147.
3. Peng TI, Jou MJ. Oxidative stress caused by mitochondrial calcium overload. Ann N Y Acad Sci 2010; 1201(1): 183-8.
4. Taylor R. Insulin resistance and type 2 diabetes. Diabetes 2012; 61(4): 778-9.
5. Voos W, Jaworek W, Wilkening A, Bruderek M. Protein quality control at the mitochondrion. Essays Biochem. 2016; 60(2): 213-25.
6. Wondmkun YT. Obesity, insulin resistance, and type 2 diabetes: associations and therapeutic implications. Diabetes Metab Syndr Obes 2020; 13: 3611.
7. Kim K, Kim YH, Lee SH, Jeon MJ, Park SY, Doh KO. Effect of exercise intensity on unfolded protein response in skeletal muscle of rat. Korean J Physiol Pharmacol 2014; 18(3): 211.
8. Rochette L, Meloux A, Zeller M, Cottin Y, Vergely C. Role of humanin, a mitochondrial-derived peptide, in cardiovascular disorders. Arch Cardiovasc Dis 2020; 113(8-9): 564-71.
9. Marino Gammazza A, Macaluso F, Di Felice V, Cappello F, Barone R. Hsp60 in skeletal muscle fiber biogenesis and homeostasis: From physical exercise to skeletal muscle pathology. Cells 2018; 7(12): 224.
10. Mulyani WRW, Sanjiwani MID, Sandra I, Lestari AAW, Wihandani DM, Suastika K, et al. Chaperone-based therapeutic target innovation: Heat shock protein 70 (HSP70) for Type 2 diabetes mellitus. Diabetes Metab Syndr Obes Targets Ther 2020; 13: 559.
11. Shepherd DL, Hathaway QA, Nichols CE, Durr AJ, Pinti MV, Hughes KM, et al. Mitochondrial proteome disruption in the diabetic heart through targeted epigenetic regulation at the mitochondrial heat shock protein 70 (mtHsp70) nuclear locus. J Mol Cell Cardiol 2018; 119: 104-15.
12. Pellegrino MW, Nargund AM, Haynes CM. Signaling the mitochondrial unfolded protein response. Biochim Biophys Acta 2013; 1833(2): 410-6.
13. De Gaetano A, Gibellini L, Bianchini E, Borella R, De Biasi S, Nasi M, et al. Impaired Mitochondrial Morphology and Functionality in Lonp1wt/− Mice. J Clin Med 2020; 9(6): 1783.
14. Lee H, Chung K, Lee H, Lee K, Lim J, Song J. Downregulation of mitochondrial lon protease impairs mitochondrial function and causes hepatic insulin resistance in human liver SK-HEP-1 cells. Diabetologia 2011; 54(6): 1437-46.
15. Wang J, Polaki V, Chen S, Bihl JC. Exercise improves endothelial function associated with alleviated inflammation and oxidative stress of perivascular adipose tissue in type 2 diabetic mice. Oxid Med Cell Longevity 2020; 2020.
16. Cacho J, Sevillano J, de Castro J, Herrera E, Ramos MD. Validation of simple indexes to assess insulin sensitivity during pregnancy in Wistar and Sprague-Dawley rats. Am J Physiol Endocrinol Metab 2008; 295(5): E1269-76.
17. Ranjbar Kohan N, Tabandeh MR, Nazifi S, Soleimani Z. L‐carnitine improves metabolic disorders and regulates apelin and apelin receptor genes expression in adipose tissue in diabetic rats. Physiol Rep 2020; 8(23): e14641.
18. Akram S, Tabssum M, Rao M, Qureshi HJ. Effect of endurance exercise on oxidative stress marker malondialdehyde in type 2 diabetic mice. Professional Med J 2020; 27(07): 1493-8.
19. Lumini JA, Magalhaes J, Oliveira PJ, Ascensao A. Beneficial effects of exercise on muscle mitochondrial function in diabetes mellitus. Sports Med. 2008;38(9): 735-50.
20. Henstridge DC, Bruce CR, Drew BG, Tory K, Kolonics A, Estevez E, et al. Activating HSP72 in rodent skeletal muscle increases mitochondrial number and oxidative capacity and decreases insulin resistance. Diabetes 2014; 63(6): 1881-94.
21. Gupte AA, Bomhoff GL, Swerdlow RH, Geiger PC. Heat treatment improves glucose tolerance and prevents skeletal muscle insulin resistance in rats fed a high-fat diet. Diabetes 2009; 58(3): 567-78.
22. Tamura Y, Kitaoka Y, Matsunaga Y, Hoshino D, Hatta H. Daily heat stress treatment rescues denervation‐activated mitochondrial clearance and atrophy in skeletal muscle. J Physiol 2015; 593(12): 2707-20.
23. Liu C-T, Brooks GA. Mild heat stress induces mitochondrial biogenesis in C2C12 myotubes. J Appl Physiol 2012; 112(3): 354-61.
24. Venojärvi M, Aunola S, Puhke R, Marniemi J, Hämäläinen H, Halonen J-P, et al. Exercise training with dietary counselling increases mitochondrial chaperone expression in middle-aged subjects with impaired glucose tolerance. BMC Endocr Disord 2008; 8(1): 1-1.
25. Noble EG, Milne KJ, Melling CJ. Heat shock proteins and exercise: a primer. Appl Physiol Nutr Metab 2008; 33(5): 1050-75.
26. Sammut IA, Harrison JC. Cardiac mitochondrial complex activity is enhanced by heat shock proteins. Clin Exp Pharmacol Physiol 2003; 30(1-2): 110-5.
27. Chung J, Nguyen A-K, Henstridge DC, Holmes AG, Chan MS, Mesa JL, et al. HSP72 protects against obesity-induced insulin resistance. Proc Natl Acad Sci 2008; 105(5): 1739-44.
28. Dimauro I, Antonioni A, Mercatelli N, Grazioli E, Fantini C, Barone R, et al. The early response of αB-crystallin to a single bout of aerobic exercise in mouse skeletal muscles depends upon fiber oxidative features. Redox Biol 2019; 24: 101183.
29. Kim JY, Han Y, Lee JE, Yenari MA. The 70-kDa heat shock protein (Hsp70) as a therapeutic target for stroke. Expert Opin Ther Targets 2018; 22(3): 191-9.
30. Atalay M, Oksala NK, Laaksonen DE, Khanna S, Nakao C, Lappalainen J, et al. Exercise training modulates heat shock protein response in diabetic rats. J Appl Physiol 2004; 97(2): 605-11.
31. Krause M, Ludwig MS, Heck TG, Takahashi HK. Heat shock proteins and heat therapy for type 2 diabetes: pros and cons. Curr Opin Clin Nutr Metab Care 2015; 18(4): 374-80.
32. Tytell M, Davis AT, Giles J, Snider LC, Xiao R, Dozier SG, et al. Alfalfa-derived HSP70 administered intranasally improves insulin sensitivity in mice. Cell Stress Chaperones 2018; 23(2): 189-94.
33. Kalvala AK, Yerra VG, Sherkhane B, Gundu C, Arruri V, Kumar R, et al. Chronic hyperglycemia impairs mitochondrial unfolded protein response and precipitates proteotoxicity in experimental diabetic neuropathy: focus on LonP1 mediated mitochondrial regulation. Pharmacol Rep 2020; 72(6): 1627-44.
34. Shpilka T, Haynes CM. The mitochondrial UPR: mechanisms, physiological functions and implications in ageing. Nat Rev Mol Cell Biol 2018; 19(2): 109-20.
35. Pinti M, Gibellini L, Liu Y, Xu S, Lu B, Cossarizza A. Mitochondrial Lon protease at the crossroads of oxidative stress, ageing and cancer. Cell Mol Life Sci 2015; 72(24): 4807-24.
36. Zurita Rendón O, Shoubridge EA. LONP1 is required for maturation of a subset of mitochondrial proteins, and its loss elicits an integrated stress response Mol Cell Biol 2018; 38(20): e00412-17.
37. De Gaetano A, Gibellini L, Bianchini E, Borella R, De Biasi S, Nasi M, et al. Impaired Mitochondrial Morphology and Functionality in Lonp1wt/− Mice. J Clin Med 2020; 9(6): 1783.
38. Yi H-S, Chang JY, Shong M. The mitochondrial unfolded protein response and mitohormesis: a perspective on metabolic diseases. J Mol Endocrinol 2018; 61(3): 91-105.
39. Montgomery MK, Turner N. Mitochondrial dysfunction and insulin resistance: an update. Endo connect 2015; 4(1): 1-15.
40. Zurita Rendón O, Shoubridge EA. LONP1 is required for maturation of a subset of mitochondrial proteins, and its loss elicits an integrated stress response. Mol Cell Biol 2018; e00412-17.
41. Itariu BK, Stulnig TM. Autoimmune aspects of type 2 diabetes mellitus-a mini-review. Gerontology 2014; 60(3): 189-96.
42. Maltais ML, Perreault K, Courchesne-Loyer A, Lagacé J-C, Barsalani R, Dionne IJ. Effect of resistance training and various sources of protein supplementation on body fat mass and metabolic profile in sarcopenic overweight older adult men: a pilot study. Int J Sport Nutr Exerc Metab 2016; 26(1): 71-7.
43. Vancea DMM, Vancea JN, Pires MIF, Reis MA, Moura RB, Dib SA. Effect of frequency of physical exercise on glycemic control and body composition in type 2 diabetic patients. Arq Brasil cardio 2009; 92(1): 23-30.
44. Glans F, Eriksson K-F, Segerström Å, Thorsson O, Wollmer P, Groop L. Evaluation of the effects of exercise on insulin sensitivity in Arabian and Swedish women with type 2 diabetes. Diabetes Res Clin Pract 2009; 85(1): 69-74.
45. Cunha VN, de Paula Lima M, Motta‐Santos D, Pesquero JL, de Andrade RV, de Almeida JA, et al. Role of exercise intensity on GLUT4 content, aerobic fitness and fasting plasma glucose in type 2 diabetic mice. Cell Biochem Funct 2015; 33(7): 435-42.
46. Soori R, Rashidi M, Choobineh S, Ravasi AA, Baesi K, Rashidy-Pour A. Effects of 12 weeks resistant training on MTNR1B gene expression in the pancreas and glucose and insulin levels in type 2 diabetic rats. Koomesh 2017; 19(1): 46-55. [in Persian]
47. Arora E, Shenoy S, Sandhu JS. Effects of resistance training on metabolic profile of adults with type 2 diabetes. Indian J Med Res 2009; 129(5): 515-19.
48. Cerf ME. Beta cell dysfunction and insulin resistance. Frontiers endocrin 2013; 4: 37.
49. Gandhi SM, Nylen ES, Sen S. The Role of Physical Activity on Insulin Resistance-Associated Endothelial Dysfunction. In Vascular Biology-Selection of Mechanisms and Clinical Applications 2019 Sep 20. IntechOpen.
50. Montgomery MK, Turner N. Mitochondrial dysfunction and insulin resistance: an update. Endo connect 2015; 4(1): 1-15.
51. CDC. National diabetes statistics report, 2017. Estimates of diabetes and its burden in the United States. 2017 Jul 18.
52. Olver TD, Laughlin MH, Padilla J. Exercise and vascular insulin sensitivity in skeletal muscle and brain. Exerc Sport Sci Rev 2019; 47(2): 66.
53. Hey-Mogensen M, Højlund K, Vind B, Wang L, Dela F, Beck-Nielsen H, et al. Effect of physical training on mitochondrial respiration and reactive oxygen species release in skeletal muscle in patients with obesity and type 2 diabetes. Diabetologia 2010; 53(9): 1976-85.
54. Meex RC, Schrauwen-Hinderling VB, Moonen-Kornips E, Schaart G, Mensink M, Phielix E, et al. Restoration of muscle mitochondrial function and metabolic flexibility in type 2 diabetes by exercise training is paralleled by increased myocellular fat storage and improved insulin sensitivity. Diabetes 2010; 59(3): 572-9.


XML   English Abstract   Print



بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.
دوره 26، شماره 4 - ( دوماه نامه 1401 ) برگشت به فهرست نسخه ها