:: دوره 26، شماره 1 - ( دوماه نامه 1401 ) ::
جلد 26 شماره 1 صفحات 21-9 برگشت به فهرست نسخه ها
طراحی in silico و تأیید in vitro برای siRNA هدف گیرنده ژن PTX3 در رده سلولی گلیوما
رضا احمدی بنی ، شیرین شهبازی* ، علیرضا خوشنویسان ، جواد بهروزی
گروه ژنتیک پزشکی، دانشکده علوم پزشکی، دانشگاه تربیت مدرس، تهران، ایران ، sh.shahbazi@modares.ac.ir
چکیده:   (1239 مشاهده)
سابقه و هدف: شناسایی مکانیسم‌های زمینه‌ای پاتوژنز گلیوما از اهمیت ویژه‌ای برخوردار است. بیان بیش از حدّ ژن PTX3 عمیقاً در پاتوژنز گلیوما نقش دارد. سرکوب بیان ژن هدف بر پایه تداخل RNA (RNAi) ازطریق مولکول‌های RNA دورشته‌ای ازجمله siRNA می‌تواند به‌عنوان یک ابزار درمانی برای خاموشی انکوژن استفاده شود. هدف مطالعه حاضر، القای آپوپتوز در رده سلولی گلیومای U-87 با سرکوب ژن PTX3 است.
مواد و روش‌ها: انواع روش‌های in silico برای طراحی siRNA در برابر ژن PTX3 استفاده شد، سپس امتیاز‌بندی طبق قوانین طراحی صورت گرفت. بهترین مولکول siRNA علیه ژن PTX3 انتخاب و همچنین siRNA درهم‌ریخته آن نیز طراحی و کارایی خاموش‌کردن PTX3 در سلول‌‌های U-87 توسط Real-time PCR ارزیابی شد. همچنین میزان مرگ سلول‌های ترنسفکت‌شده با گروه‌های کنترل توسط فلوسایتومتری مقایسه شد تا اثر کاهش بیان PTX3 بر آپوپتوز سلولی بررسی شود.
نتایج: 53 مولکول PTX3-siRNA طراحی‌شده از جهات گوناگون، بررسی و امتیاز‌دهی و بهترین موارد جهت استفاده در تحقیقات سرکوب بیان ژن PTX3 پیشنهاد شدند. تیمار 72 ساعته سلول‌های U-87 با PTX3-siRNA طراحی‌شده در غلظت 100 نانومولار قادر به کاهش بیان PTX3 به میزان 69 درصد بود. نتایج فلوسایتومتری نیز نشانگر القای آپوپتوز در 65 درصد سلول‌‌ها بود.
نتیجه‌گیری: کارآیی siRNA طراحی‌شده با روش in vitro تأیید شد که بر کاهش بیان ژن PTX3 و القای آپوپتوز در سلول‌های گلیوما U-87 تأثیر قابل‌ملاحظه‌ای داشت.
واژه‌های کلیدی: PTX3، گلیوما، siRNA، آپوپتوز، U-87
متن کامل [PDF 888 kb]   (925 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: medicine, paraclinic
دریافت: 1400/9/17 | ویرایش نهایی: 1401/1/20 | پذیرش: 1400/11/24 | انتشار: 1401/1/15
فهرست منابع
1. Delgado-López PD, Corrales-García EM. Survival in glioblastoma: a review on the impact of treatment modalities. Clin Transl Oncol 2016; 18(11): 1062-71.
2. Pessina F, Navarria P, Cozzi L, Ascolese AM, Simonelli M, Santoro A, et al. Maximize surgical resection beyond contrast-enhancing boundaries in newly diagnosed glioblastoma multiforme: is it useful and safe? A single institution retrospective experience. J Neurooncol 2017; 135(1): 129-39.
3. Ahmadi-Beni R, Khoshnevisan A. An overview of crucial genes involved in stemness of glioblastoma multiforme. Neurochem J 2017; 11(4): 259-65.
4. Ahmadi-Beni R, Najafi A, Savar SM, Mohebbi N, Khoshnevisan A. Role of dimethyl fumarate in the treatment of glioblastoma multiforme: A review article. Iran J Neurol 2019;18(3):127.
5. Noori-Daloii M-R, Ahmadi-beni R. Glioblastoma gene therapy and related delivery systems. Med Sci 2017; 27(3): 149-63. [in Persian]
6. Garlanda C, Bottazzi B, Magrini E, Inforzato A, Mantovani A. PTX3, a humoral pattern recognition molecule, in innate immunity, tissue repair, and cancer. Physiol Rev 2018; 98(2): 623-39.
7. Wang Z, Wang X, Zou H, Dai Z, Feng S, Zhang M, et al. The Basic Characteristics of the Pentraxin Family and Their Functions in Tumor Progression. Front Immunol 2020; 11: 1757.
8. Giacomini A, Ghedini GC, Presta M, Ronca R. Long pentraxin 3: A novel multifaceted player in cancer. Biochim Biophys Acta Rev Cancer 2018; 1869(1): 53-63.
9. Doni A, Stravalaci M, Inforzato A, Magrini E, Mantovani A, Garlanda C, et al. The long pentraxin PTX3 as a link between innate immunity, tissue remodeling, and cancer. Front Immunol 2019; 10: 712.
10. Wang Z, Wang X, Zhang N, Zhang H, Dai Z, Zhang M, et al. Pentraxin 3 promotes glioblastoma progression by negative regulating cells autophagy. Front Cell Dev Biol 2020; 8: 795.
11. Petterson SA, Sørensen MD, Kristensen BW. Expression profiling of primary and recurrent glioblastomas reveals a reduced level of pentraxin 3 in recurrent glioblastomas. J Neuropathol Exp Neurol 2020; 79(9): 975-85.
12. Locatelli M, Ferrero S, Boneschi FM, Boiocchi L, Zavanone M, Gaini SM, et al. The long pentraxin PTX3 as a correlate of cancer-related inflammation and prognosis of malignancy in gliomas. J Neuroimmunol 2013; 260(1-2): 99-106.
13. Yeh CM, Lin CW, Chuang CY, Liu YF, Chou CH, Yang SF, et al. Functional genetic variant of long PENTRAXIN 3 gene is associated With clinical aspects of oral cancer in male patients. Front Oncol 2019; 9: 581.
14. Gluszek S, Matykiewicz J, Grabowska U, Chrapek M, Nawacki L, Wawrzycka I, et al. Clinical usefulness of pentraxin 3 (PTX3) as a biomarker of acute pancreatitis and pancreatic cancer. Stud Med 2020; 36(1): 6-13.
15. Goulart MR, Watt J, Siddiqui I, Lawlor RT, Imrali A, Hughes C, et al. Pentraxin 3 is a stromally-derived biomarker for detection of pancreatic ductal adenocarcinoma. NPJ Precis Oncol 2021; 5(1): 1-10.
16. Choi B, Lee E-J, Shin M-K, Park YS, Ryu M-H, Kim S-M, et al. Upregulation of brain-derived neurotrophic factor in advanced gastric cancer contributes to bone metastatic osteolysis by inducing long pentraxin 3. Oncotarget 2016; 7(34): 55506.
17. Choi B, Lee EJ, Park YS, Kim S-M, Kim EY, Song Y, et al. Pentraxin-3 silencing suppresses gastric cancer-related inflammation by inhibiting chemotactic migration of macrophages. Anticancer Res 2015; 35(5): 2663-8.
18. Hu T, Qiao L, Li H, Ren H, Ning Q, Zhou H, et al. Pentraxin 3 (PTX-3) Levels in Bronchoalveolar Lavage Fluid as a Lung Cancer Biomarker. Dis Markers 2020; 2020.
19. Ahmmed B, Kampo S, Khan M, Faqeer A, Kumar SP, Yulin L, et al. Rg3 inhibits gemcitabine‐induced lung cancer cell invasiveness through ROS‐dependent, NF‐κB‐and HIF‐1α‐mediated downregulation of PTX3. J Cell Physiol 2019; 234(7): 10680-97.
20. Ying TH, Lee CH, Chiou HL, Yang SF, Lin CL, Hung CH, et al. Knockdown of Pentraxin 3 suppresses tumorigenicity and metastasis of human cervical cancer cells. Sci Rep 2016; 6(1): 1-12.
21. Yu LM, Wang WW, Qi R, Leng TG, Zhang XL. MicroRNA‐224 inhibition prevents progression of cervical carcinoma by targeting PTX3. J Cell Biochem 2018; 119(12): 10278-90.
22. Kampo S, Ahmmed B, Zhou T, Owusu L, Anabah TW, Doudou NR, et al. Scorpion venom analgesic peptide, BmK AGAP inhibits stemness, and epithelial-mesenchymal transition by down-regulating PTX3 in breast cancer. Front Oncol 2019; 9: 21.
23. Zhang P, Liu Y, Lian C, Cao X, Wang Y, Li X, et al. SH3RF3 promotes breast cancer stem-like properties via JNK activation and PTX3 upregulation. Nat Commun 2020;11(1):1-13.
24. Wills CA, Liu X, Chen L, Zhao Y, Dower CM, Sundstrom J, et al. Chemotherapy-induced upregulation of small extracellular vesicle-associated PTX3 accelerates breast cancer metastasis. Cancer Res 2021;81(2):452-63.
25. Chang X, Li D, Liu C, Zhang Z, Wang T. Pentraxin 3 is a diagnostic and prognostic marker for ovarian epithelial cancer patients based on comprehensive bioinformatics and experiments. Cancer Cell Int 2021; 21(1): 1-13.
26. Stallone G, Netti GS, Cormio L, Castellano G, Infante B, Pontrelli P, et al. Modulation of complement activation by pentraxin-3 in prostate cancer. Sci Rep 2020; 10(1): 1-11.
27. Güzel Ö, Kösem A, Aslan Y, Asfuroglu A, Balci M, Senel C, et al. The Role of Pentraxin-3, Fetuin-A and Sirtuin-7 in the Diagnosis of Prostate Cancer. Urol J 2021: 6626.
28. Falagario UG, Busetto GM, Netti GS, Sanguedolce F, Selvaggio O, Infante B, et al. Prospective Validation of Pentraxin-3 as a Novel Serum Biomarker to Predict the Risk of Prostate Cancer in Patients Scheduled for Prostate Biopsy. Cancers (Basel) 2021; 13(7): 1611.
29. Netti GS, Lucarelli G, Spadaccino F, Castellano G, Gigante M, Divella C, et al. PTX3 modulates the immunoflogosis in tumor microenvironment and is a prognostic factor for patients with clear cell renal cell carcinoma. Aging (Albany NY) 2020; 12(8): 7585.
30. Liu B, Zhao Y, Guo L. Increased serum pentraxin-3 level predicts poor prognosis in patients with colorectal cancer after curative surgery, a cohort study. Medicine (Baltimore) 2018;97(40).
31. Deng H, Fan X, Wang X, Zeng L, Zhang K, Zhang X, et al. Serum pentraxin 3 as a biomarker of hepatocellular carcinoma in chronic hepatitis B virus infection. Sci Rep 2020;10(1):1-10.
32. Cabiati M, Gaggini M, De Simone P, Del Ry S. Do pentraxin 3 and neural pentraxin 2 have different facet function in hepatocellular carcinoma? Clin Exp Med 2021:1-8.
33. Carmo RF, Aroucha D, Vasconcelos LRS, Pereira L, Moura P, Cavalcanti MSM. Genetic variation in PTX 3 and plasma levels associated with hepatocellular carcinoma in patients with HCV. J Viral Hepat 2016;23(2):116-22.
34. Rathore M, Girard C, Ohanna M, Tichet M, Jouira RB, Garcia E, et al. Cancer cell-derived long pentraxin 3 (PTX3) promotes melanoma migration through a toll-like receptor 4 (TLR4)/NF-κB signaling pathway. Oncogene 2019; 38(30): 5873-89.
35. Guo P, Zhang SZ, He H, Zhu Y-T, Tseng SCG. PTX3 controls activation of matrix metalloproteinase 1 and apoptosis in conjunctivochalasis fibroblasts. Invest Ophthalmol Vis Sci 2012; 53(7): 3414-23.
36. Lee HH, Kim SY, Na JC, Yoon YE, Han WK. Exogenous pentraxin-3 inhibits the reactive oxygen species-mitochondrial and apoptosis pathway in acute kidney injury. PloS One 2018; 13(4): e0195758.
37. Lian C, Huang Q, Zhong X, He Z, Liu B, Zeng H, et al. Pentraxin 3 secreted by human adipose‐derived stem cells promotes dopaminergic neuron repair in Parkinson's disease via the inhibition of apoptosis. FASEB J 2021;35(7):e21748.
38. He D, Yan L. MiR-29b-3p aggravates cardiac hypoxia/reoxygenation injury via targeting PTX3. Cytotechnology 2021; 1-10.
39. Chang WC, Wu SL, Huang WC, Hsu JY, Chan SH, Wang JM, et al. PTX3 gene activation in EGF-induced head and neck cancer cell metastasis. Oncotarget 2015; 6(10): 7741.
40. Ahmmed B, Khan MN, Nisar MA, Kampo S, Zheng Q, Li Y, et al. Tunicamycin enhances the suppressive effects of cisplatin on lung cancer growth through PTX3 glycosylation via AKT/NF-κB signaling pathway. Int J Oncol 2019; 54(2): 431-42.
41. Chan SH, Tsai JP, Shen CJ, Liao YH, Chen BK. Oleate-induced PTX3 promotes head and neck squamous cell carcinoma metastasis through the up-regulation of vimentin. Oncotarget 2017; 8(25): 41364.
42. Thomas C, Henry W, Cuiffo BG, Collmann AY, Marangoni E, Benhamo V, et al. Pentraxin-3 is a PI3K signaling target that promotes stem cell–like traits in basal-like breast cancers. Sci Signal 2017; 10(467).
43. O’Keefe EP. siRNAs and shRNAs: Tools for protein knockdown by gene silencing. Mater Methods 2013; 3: 197.
44. Jinek M, Doudna JA. A three-dimensional view of the molecular machinery of RNA interference. Nature 2009; 457(7228): 405-12.
45. Paddison PJ, Caudy AA, Bernstein E, Hannon GJ, Conklin DS. Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes Dev 2002; 16(8): 948-58.
46. Malekshahi SS, Arefian E, Salimi V, Azad TM, Yavarian J. Potential siRNA molecules for nucleoprotein and M2/L overlapping region of respiratory syncytial virus: In silico design. Jundishapur J Microbiol 2016; 9(4).
47. Tuschl T. Tom Tuschl's motif siRNA design rules and siRNA rational design. Protocol Online 2009. Available at: http://www.protocol-online.org/prot/Protocols/Rules-of-siRNA-design-for-RNA-interference--RNAi--3210.html
48. Baghban-Kohnehrouz B, Nayeri S. Design, simplified cloning, and in-silico analysis of multisite small interfering RNA-targeting cassettes. Mol Biol Res Commun 2016; 5(1): 31.
49. McIntyre GJ, Yu YH, Lomas M, Fanning GC. The effects of stem length and core placement on shRNA activity. BMC Mol Biol 2011; 12(1): 1-12.
50. Bofill-De Ros X, Gu S. Guidelines for the optimal design of miRNA-based shRNAs. Methods 2016; 103: 157-66.
51. Fakhr E, Zare F, Teimoori-Toolabi L. Precise and efficient siRNA design: a key point in competent gene silencing. Cancer Gene Ther 2016; 23(4): 73-82.
52. Tung JN, Ko CP, Yang SF, Cheng CW, Chen P-N, Chang CY, et al. Inhibition of pentraxin 3 in glioma cells impairs proliferation and invasion in vitro and in vivo. J Neurooncol 2016;129(2):201-9.
53. Liu Q, Wang XY, Qin YY, Yan XL, Chen HM, Huang QD, et al. SPOCD1 promotes the proliferation and metastasis of glioma cells by up-regulating PTX3. Am J Cancer Res 2018;8(4):624.
54. Ke HH, Hueng DY, Tsai WC. Low expression of pentraxin 3 and nuclear factor-like 2 implying a relatively longer overall survival time in gliomas. Chin J Physiol 2019; 62(1): 35.
55. Li Y, Song X, Niu J, Ren M, Tang G, Sun Z, et al. Pentraxin 3 acts as a functional effector of Akt/NF-κB signaling to modulate the progression and cisplatin-resistance in non-small cell lung cancer. Arch Biochem Biophys 2021; 701: 108818.



XML   English Abstract   Print



Creative Commons License
This open access journal is licensed under a Creative Commons Attribution-NonCommercial ۴.۰ International License. CC BY-NC ۴. Design and publishing by Kashan University of Medical Sciences.
Copyright ۲۰۲۳© Feyz Medical Sciences Journal. All rights reserved.
دوره 26، شماره 1 - ( دوماه نامه 1401 ) برگشت به فهرست نسخه ها