[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
:: Volume 25, Issue 1 (Bimonthly 2021) ::
Feyz 2021, 25(1): 714-723 Back to browse issues page
Assessment of the cryoprotective effects of fetal bovine serum (FBS) and trehalose on the viability rate of caprine spermatogonial stem cells (SSCs)
Mohaddeseh Ahmadi , Peyman Rahimi-Feyli , Aliasghar Moghaddam , Samad Alimohammadi *
Department of Basic Sciences, Section of Physiology, Faculty of Veterinary Medicine, Razi University, Kermanshah, I.R. Iran. , S.alimohammadi@razi.ac.ir
Abstract:   (416 Views)
Background: Spermatogonial stem cells (SSCs) are the foundation of spermatogenesis, because they have the capacity of self-renewal, and differentiation into spermatozoa. Freezing is the most common long-term preservation approach for SSCs. The present study aimed to investigate the cryoprotective impacts of FBS (Fetal Bovine Serum) and trehalose on caprine SSCs.
Materials and Methods: SSCs were isolated from prepubertal goat testis by enzymatic digestion and differential plating. Cells were divided into 9 groups. The control group included SSCs without cryoprotective agents. In the treatment groups 1, 2, 3 and 4, concentration of 10% FBS, and various concentrations of trehalose (0, 50, 100 and 200 mM), and in the treatment groups 5, 6, 7, and 8, concentration of 20% FBS and various concentrations of trehalose (0, 50, 100 and 200 mM) were used respectively. The viability rate of the cells was assessed immediately after isolation, following addition of cryoprotectant agents and after thawing. Identification of cells was confirmed by immunocytochemical staining against PGP9.5 antigen. Data were analyzed using one-way ANOVA test.
Results: The viability rate of SSCs in various treatments following addition of FBS and trehalose were similar to viable cells immediately after isolation. Furthermore, higher viability rates of SSCs after thawing were observed in freezing medium containing 10% FBS and 200 mM trehalose (P<0.05).
Conclusion: The results revealed that freezing in 10% FBS with 200 mM trehalose acts as efficient method for the cryopreservation of caprine SSCs.
Keywords: Cryoprotectant agents, Fetal bovine serum (FBS), Trehalose, Spermatogonial Stem Cells (SSCs)
Full-Text [PDF 1163 kb]   (87 Downloads)    
Type of Study: Research | Subject: medicine, paraclinic
Received: 2020/11/23 | Accepted: 2021/02/17 | Published: 2021/04/6
References
1. Oatley JM, Brinster RL. Spermatogonial stem cells. Methods Enzymol 2006; 419: 259-82.
2. de Rooij DG. The spermatogonial stem cell niche. Microsc Res Tech 2009; 72(8): 580-5.
3. Hill JR, Dobrinski I. Male germ cell transplantation in livestock. Reprod Fertil Dev 2005; 18(2): 13-18.
4. Liu S, Tang Z, Xiong T, Tang W. Isolation and characterization of human spermatogonial stem cells. Reprod Biol Endocrinol 2011; 9: 141.
5. Aponte PM. Spermatogonial stem cells: current biotechnological advances in reproduction and regenerative medicine. World J Stem Cells 2015; 7(4): 669-80.
6. Zheng Y, Zhang Y, Qu R, He Y, Tian X, Zeng W. Spermatogonial stem cells from domestic animals: progress and prospects. Reproduction 2014; 147(3): 65-74.
7. Kadivarian H, Rahimi-Feyli P, Moghaddam A, Alimohammadi S. Evaluation of the effect of follicle stimulating hormone (FSH) on survival and colonization of caprine spermatogonial stem cells during in vitro culture. Qom Univ Med Sci J 2020; 13(12): 1-12. [in Persian]
8. Kubota H, Brinster RL. Culture of rodent spermatogonial stem cells, male germline stem cells of the postnatal animal. Methods Cell Biol 2008; 86: 59-84.
9. Izadyar F, Matthijs‐Rijsenbilt JJ, Den Ouden K, Creemers LB, Woelders H, de Rooij DG. Development of a cryopreservation protocol for type a spermatogonia. J Androl 2002; 23(4): 537-45.
10. Aliakbari F, Yazdekhasti H, Abbasi M, Hajian Monfared M, Baazm M. Advances in cryopreservation of spermatogonial stem cells and restoration of male fertility. Microsc Res Tech 2016; 79(2): 122-9.
11. Fuller B, Paynter S. Fundamentals of cryobiology in reproductive medicine. Reprod Biomed Online 2004; 9(6): 680-91.
12. Lee YA, Kim YH, Kim BJ, Kim BG, Kim KJ, Auh JH, et al. Cryopreservation in trehalose preserves functional capacity of murine spermatogonial stem cells. PLoS ONE 2013; 8(1): e54889.
13. Gholami M, Hemadi M, Saki G, Zendedel A, Khodadadi A, Mohammadi-asl J. Does prepubertal testicular tissue vitrification influence spermatogonial stem cells (SSCs) viability? J Assist Reprod Genet 2013; 30(10): 1271-7.
14. Len JS, Koh WS, Tan SX. The roles of reactive oxygen species and antioxidants in cryopreservation. Biosci Rep 2019; 39(8): BSR20191601.
15. Onofre J, Baert Y, Faes K, Goossens E. Cryopreservation of testicular tissue or testicular cell suspensions: a pivotal step in fertility preservation. Hum Reprod Update 2016; 22(6): 744-61.
16. Lee YA, Kim YH, Ha SJ, Kim BJ, Kim KJ, Jung MS, et al. Effect of sugar molecules on the cryopreservation of mouse spermatogonial stem cells. Fertil Steril 2014; 101(4): 1165-75.
17. Moghaddam AA, Rahimi-Felyi P, Nikousefat Z, Zarghami S. Effects of different concentrations of sucrose and fetal bovine serum on viability rate of lamb spermatogonial stem cells before and after cryopreservation. Feyz 2016; 20(2): 157-64. [in Persian]
18. Kim KJ, Lee YA, Kim BJ, Kim YH, Kim BG, Kang HG, et al. Cryopreservation of putative pre-pubertal bovine spermatogonial stem cells by slow freezing. Cryobiology 2015; 70(2): 175-83.
19. Lee YA, Kim YH, Ha SJ, Kim KJ, Kim BJ, Kim BG, et al. Cryopreservation of porcine spermatogonial stem cells by slow-freezing testis tissue in trehalose. J Anim Sci 2014; 92(3): 984-95.
20. Yang PF, Hua TC, Tsung HC, Cheng QK, Cao YL. Effective cryopreservation of human embryonic stem cells by programmed freezing. Conf Proc IEEE Eng Med Biol Soc 2005; 1(1): 482-5.
21. Eroglu A, Russo MJ, Bieganski R, Fowler A, Cheley S, Bayley H, et al. Intracellular trehalose improves the survival of cryopreserved mammalian cells. Nat Biotechnol 2000; 18: 163-7.
22. Limaye LS, Kale VP. Cryopreservation of human hematopoietic cells with membrane stabilizers and bioantioxidants as additives in the conventional freezing medium. J Hematother Stem Cell Res 2001; 10: 709-18.
23. Aboagla EM, Terada T. Trehalose-enhanced fluidity of the goat sperm membrane and its protection during freezing. Biol Reprod 2003; 69(4): 1245-50.
24. van Pelt AM, Morena AR, van Dissel-Emiliani FM, Boitani C, Gaemers IC, de Rooij DG, et al. Isolation of the synchronized A spermatogonia from adult vitamin A-deficient rat testes. Biol Reprod 1996; 55(2): 439-44.
25. Zandi A, Rahimi-Feyli P, Moghaddam AA, Nikousefat Z. Effect of testosterone on of ovine spermatogonial colony formation in-vitro. Feyz 2016; 20(3): 205-13. [in Persian]
26. Heidari B, Rahmati-Ahmadabadi M, Akhondi MM, Zarnani AH, Jeddi-Tehrani M, Shirazi A, et al. Isolation, identification, and culture of goat spermatogonial stem cells using c-kit and PGP9.5 markers. J Assist Reprod Genet 2012; 29(10): 1029-38.
27. Rodriguez-Sosa JR, Dobson H, Hahnel A. Isolation and transplantation of spermatogonia in sheep. Theriogenology 2006; 66(9): 2091-103.
28. Kubota H, Avarbock MR, Brinster RL. Growth factors essential for self-renewal and expansion of mouse spermatogonial stem cells. Proc Natl Acad Sci 2004; 101(47): 16489-94.
29. Shirazi MS, Heidari B, Shirazi A, Zarnani AH, Jeddi-Tehrani M, Rahmati-Ahmadabadi M, et al. Morphologic and proliferative characteristics of goat type A spermatogonia in the presence of different sets of growth factors. J Assist Reprod Genet 2014; 31(11): 1519-31.
30. Moraveji SF, Esfandiari F, Sharbatoghli M, Taleahmad S, Nikeghbalian S, Shahverdi A, et al. Optimizing methods for human testicular tissue cryopreservation and spermatogonial stem cell isolation. J Cell Biochem 2019; 120(1): 613-21.
31. Ha SJ, Kim BG, Lee YA, Kim YH, Kim BJ, Jung SE, et al. Effect of antioxidants and apoptosis inhibitors on cryopreservation of murine germ cells enriched for spermatogonial stem cells. PLoS ONE 2016; 11(8): e0161372.
32. Hoffmann N, Oldenhof H, Morandini C, Rohn K, Sieme H. Optimal concentrations of cryoprotective agents for semen from stallions that are classified ‘good’or ‘poor’ for freezing. Anim Reprod Sci 2011; 125(1-4): 112-8.
33. van Casteren NJ, van der Linden GH, Hakvoort‐Cammel FG, Hählen K, Dohle GR, van den Heuvel‐Eibrink MM. Effect of childhood cancer treatment on fertility markers in adult male long‐term survivors. Pediatr Blood Cancer 2009; 52(1): 108-12.
34. Bissoyi A, Nayak B, Pramanik K, Sarangi SK. Targeting cryopreservation-induced cell death: a review. Biopreserv Biobank 2014; 12(1): 23-34.
35. Fowler A, Toner M. Cryo‐injury and biopreservation. Ann N Y Acad Sci 2006; 1066(1): 119-35.
36. Baust JG, Gao D, Baust JM. Cryopreservation: An emerging paradigm change. Organogenesis 2009; 5(3): 90-6.
37. Van der Valk J, Brunner D, De Smet K, Svenningsen ÅF, Honegger P, Knudsen LE, et al. Optimization of chemically defined cell culture media-replacing fetal bovine serum in mammalian in vitro methods. Toxicol In Vitro 2010; 24(4): 1053-63.
38. Gstraunthaler G. Alternatives to the use of fetal bovine serum: serum-free cell culture. ALTEX 2003; 20(4): 275-81.
39. Huebinger J. Modification of cellular membranes conveys cryoprotection to cells during rapid, non-equilibrium cryopreservation. PloS ONE 2018; 13(10): e0205520.
40. Marco-Jiménez F, Garzón DL, Peñaranda DS, Pérez L, Viudes-de-Castro MP, Vicente JS, et al. Cryopreservation of European eel (Anguilla anguilla) spermatozoa: effect of dilution ratio, foetal bovine serum supplementation, and cryoprotectants. Cryobiology 2006; 53(1): 51-7.
41. Chaytor JL, Tokarew JM, Wu LK, Leclère M, Tam RY, Capicciotti CJ, et al. Inhibiting ice recrystallization and optimization of cell viability after cryopreservation. Glycobiology 2012; 22(1): 123-33.
42. Fuller BJ. Cryoprotectants: the essential antifreezes to protect life in the frozen state. CryoLetters 2004; 25(6): 375-88.
43. Oldenhof H, Gojowsky M, Wang S, Henke S, Yu C, Rohn K, et al. Osmotic stress and membrane phase changes during freezing of stallion sperm: mode of action of cryoprotective agents. Biol Reprod 2013; 88(3): 1-11.
44. Mizunoe Y, Kobayashi M, Sudo Y, Watanabe S, Yasukawa H, Natori D, et al. Trehalose protects against oxidative stress by regulating the Keap1-Nrf2 and autophagy pathways. Redox Biol 2018; 15: 115-124.
45. Zhang XG, Wang YH, Han C, Hu S, Wang LQ, Hu JH. Effects of trehalose supplementation on cell viability and oxidative stress variables in frozen-thawed bovine calf testicular tissue. Cryobiology 2015; 70(3): 246-52.
46. Shabani H, Zandi M, Ofoghi H, Sanjabi MR, Hoseini Pajooh K. The effect of combining vitamin E and C on the viability improvement of transfected ovine spermatogonial stem cells after cryopreservation and thawing. Turk J Vet Anim Sci 2017; 41(5): 648-55.
47. Boroujeni MB, Peidayesh F, Pirnia A, Boroujeni NB, Ahmadi SAY, Gholami M. Effect of selenium on freezing-thawing damage of mice spermatogonial stem cell: a model to preserve fertility in childhood cancers. Stem Cell Investig 2019; 6: 36.
48. Kushki D, Azarnia M, Gholami M. Antioxidant effects of selenium on seminiferous tubules of immature mice testis. Zahedan J Res Med Sci 2015; 17(12): 29-33.
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA


XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ahmadi M, Rahimi-Feyli P, Moghaddam A, Alimohammadi S. Assessment of the cryoprotective effects of fetal bovine serum (FBS) and trehalose on the viability rate of caprine spermatogonial stem cells (SSCs). Feyz. 2021; 25 (1) :714-723
URL: http://feyz.kaums.ac.ir/article-1-4271-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 25, Issue 1 (Bimonthly 2021) Back to browse issues page
مجله علمی پژوهشی فیض ::: دانشگاه علوم پزشکی کاشان KAUMS Journal ( FEYZ )
Persian site map - English site map - Created in 0.04 seconds with 30 queries by YEKTAWEB 4341