[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Indexing Sources::
Guide for Authors::
Online Submission::
Ethics::
Articles archive::
For Reviewers::
Contact us::
::
Basic and Clinical Biochemistry and Nutrition
..
DOAJ
..
CINAHL
..
EBSCO
..
IMEMR
..
ISC
..
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
enamad
..
:: Volume 24, Issue 2 (Bimonthly 2020) ::
Feyz 2020, 24(2): 160-169 Back to browse issues page
The effect of 4 weeks high intensity interval training (HIIT) on the content of FOXO3a Beclin-1 proteins in the left ventricular heart tissue with type 2 diabetic rats
Masoud Jokar , Mohammad Sherafati-Moghadam
Department of General and Basic, Hashtgerd Branch, Islamic Azad University, Alborz, I.R. Iran. , m.sherafati@hiau.ac.ir
Abstract:   (2119 Views)
Background: Autophagy is a mechanism that could be inhibited or activated through exercise. FOXO3a and Beclin-1 proteins are important proteins in autophagy regulation. Therefore, this study aimed to investigate the effect of 4 weeks high intensity interval training (HIIT) on the content of FOXO3a and Beclin-1 proteins in the left ventricular heart tissue with type 2 diabetic rats.
Materials and Methods: In this experimental study, 12 two-month-old Sprague-Dawley rats with a mean weight of 270±20 g were selected. After diabetic induction with STZ and Nicotinamide, rats were randomly assigned to two groups, diabetic training (6 heads) and diabetic control (6 heads). The training group trained for 4 days a week in accordance with the training program for 4 weeks, while the control group did not have any training program. Also, the rats did not receive any insulin treatment during the study period. The protein content of the present study was measured by Western blotting. Data were analyzed by SPSS software version 19 and independent t-test.
Results: Four weeks of HIIT training resulted in a significant decrease in FOXO3a (P=0.03) and Beclin-1 (P=0.0001) proteins content in the diabetic training group compared to the diabetic control group.
Conclusion:  Four weeks of HIIT training would decrease the content of FOXO3a and Beclin-1 proteins which leads to inhibition of autophagy in the left ventricle of subjects with type 2 diabetes. Therefore, HIIT training could be a new therapeutic approach in diabetics.
Keywords: High intensity interval training, Heart muscle, Protein FOXO3a, Protein Beclin-1, Type 2 diabetes
Full-Text [PDF 397 kb]   (581 Downloads)    
Type of Study: Research | Subject: General
Received: 2019/09/17 | Revised: 2020/07/11 | Accepted: 2020/04/21 | Published: 2020/04/29
References
1. Madeo F, Zimmermann A, Maiuri MC, Kroemer G. Essential role for autophagy in life span extension. J Clin Invest 2015; 125(1): 85-93.
2. Most J, Tosti V, Redman LM, Fontana L. Calorie restriction in humans: an update. Ageing Res Rev 2017; 39: 36-45.
3. Feng Y, He D, Yao Z, Klionsky DJ. The machinery of macroautophagy. Cell Res 2014; 24(1): 24-41.
4. Daryanoosh F, Bazgir B, Alizadeh H. Effect of aerobic trainings on heart’s functioned and structure in diabetic Sprague-dawely albino species male rats. Res Appl Exer Physiol 2010; 6(12): 59-72. [in Persian]
5. Zhao J, Randive R, Stewart JA. Molecular mechanisms of AGE/RAGE-mediated fibrosis in the diabetic heart. World J Diabetes 2014; 5(6): 860-7.
6. Grøntved A, Pan A, Mekary RA, Stampfer M, Willett WC, Manson JE, et al. Muscle-strengthening and conditioning activities and risk of type 2 diabetes: a prospective study in two cohorts of US women. PLoS Med 2014; 11(1): 1-15.
7. Kim JA, Jang HJ, Martinez-Lemus LA, Sowers JR. Activation of mTOR/p70S6 kinase by ANG II inhibits insulin-stimulated endothelial nitric oxide synthase and vasodilation. Am J Physiol Endocrinol Metabol 2011; 302(2): 201-8.
8. Jia G, Habibi J, DeMarco VG, Martinez-Lemus LA, Ma L, Whaley-Connell AT, et al. Endothelial mineralocorticoid receptor deletion prevents diet-induced cardiac diastolic dysfunction in females. Hypertension 2015; 66 (6): 1159-67.
9. Jia G, DeMarco VG, Sowers JR. Insulin resistance and hyperinsulinaemia in diabetic cardiomyopathy. Nat Rev Endocrinol 2016; 12(3): 144-53.
10. Miki T, Yuda S, Kouzu H, Miura T. Diabetic cardiomyopathy: pathophysiology and clinical features. Heart Fail Rev 2013; 18(2): 149-66.
11. Kanter M, Aksu F, Takir M, Kostek O, Kanter B, Oymagil A. Effects of low intensity exercise against apoptosis and oxidative stress in Streptozotocin-induced diabetic rat heart. Experim Clin Endocrinol Diabetes 2017; 125(09): 583-91.
12. Kobayashi S, Liang Q. Autophagy and mitophagy in diabetic cardiomyopathy. Biochim Biophys Acta 2015; 1852(2): 252-61.
13. Vainshtein A, Hood DA. The regulation of autophagy during exercise in skeletal muscle. J Appl Physiol 2015; 120(6): 664-73.
14. Pietrocola F, Izzo V, Niso-Santano M, Vacchelli E, Galluzzi L, Maiuri MC, et al. Regulation of autophagy by stress-responsive transcription factors. Semin Cancer Biol 2013; 23(5): 310-22.
15. Seok HY, Chen J, Kataoka M, Huang ZP, Ding J, Yan J, et al. Loss of MicroRNA-155 protects the heart from pathological cardiac hypertrophy. Circ Res 2014; 114(10): 1585-95.
16. Milan G, Romanello V, Pescatore F, Armani A, Paik JH, Frasson L, et al. Regulation of autophagy and the ubiquitin–proteasome system by the FoxO transcriptional network during muscle atrophy. Nat Commun 2015; 6(6670):1-19.
17. Van Der Vos KE, Eliasson P, Proikas-Cezanne T, Vervoort SJ, Van Boxtel R, Putker M, et al. Modulation of glutamine metabolism by the PI(3) K–PKB–FOXO network regulates autophagy. Nat Cell Biol 2012; 14(8):829-37.
18. Xie Y, Kang R, Tang D. Role of the Beclin 1 Network in the Cross-Regulation between Autophagy and Apoptosis. Elsevier Academic Press 2016; 75-88.
19. Wirawan E, Lippens S, Vanden Berghe T, Romagnoli A, Fimia GM, Piacentini M, et al. Beclin1: a role in membrane dynamics and beyond. Autophagy 2012; 8(1): 6-17.
20. Sun Q, Fan W, Zhong Q. Regulation of Beclin 1 in autophagy. Autophagy 2009; 5(5): 713-6.
21. Ma S, Wang Y, Chen Y, Cao F. The role of the autophagy in myocardial ischemia/reperfusion injury. Biochim Biophy Acta 2015; 1852(2): 271-6.
22. Halling JF, Pilegaard H. Autophagy-dependent beneficial effects of exercise. Cold Spring Harb Perspect Med 2017; 7(8): 1-17.
23. Lo Verso F, Carnio S, Vainshtein A, Sandri M. Autophagy is not required to sustain exercise and PRKAA1/AMPK activity but is important to prevent mitochondrial damage during physical activity. Autophagy 2014; 10(11): 1883-94.
24. Grumati P, Coletto L, Schiavinato A, Castagnaro S, Bertaggia E, Sandri M, et al. Physical exercise stimulates autophagy in normal skeletal muscles but is detrimental for collagen VI-deficient muscles. Autophagy 2011; 7(12): 1415-23.
25. Medina DL, Di Paola S, Peluso I, Armani A, De Stefani D, Venditti R, et al. Lysosomal calcium signalling regulates autophagy through calcineurin and TFEB. Nat Cell Boil 2015; 17(3):288-99.
26. Vainshtein A, Tryon LD, Pauly M, Hood DA. Role of PGC-1α during acute exercise-induced autophagy and mitophagy in skeletal muscle. Am J Physiol Cell Physiol 2015; 308(9):C710-9.
27. He C, Sumpter Jr R, Levine B. Exercise induces autophagy in peripheral tissues and in the brain. Autophagy 2012; 8(10): 1548-51.
28. Hafstad AD, Boardman NT, Lund J, Hagve M, Khalid AM, Wisløff U, et al. High intensity interval training alters substrate utilization and reduces oxygen consumption in the heart. J Appl Physiol 2011; 111(5): 1235-41.
29. Trilk JL, Singhal A, Bigelman KA, Cureton KJ. Effect of sprint interval training on circulatory function during exercise in sedentary, overweight/obese women. Eur J Appl Physiol 2011; 111(8): 1591-7.
30. Slopack D, Roudier E, Liu ST, Nwadozi E, Birot O, Haas TL. Forkhead BoxO transcription factors restrain exercise‐induced angiogenesis. J Physiol 2014; 592(18): 4069-82.
31. Lee K, Ochi E, Song H, Nakazato K. Activation of AMP-activated protein kinase induce expression of FoxO1, FoxO3a, and myostatin after exercise-induced muscle damage. Biochem Biophys Res Commun 2015; 466(3): 289-94.
32. Møller AB, Lønbro S, Farup J, Voss TS, Rittig N, Wang J, et al. Molecular and cellular adaptations to exercise training in skeletal muscle from cancer patients treated with chemotherapy. J Cancer Res Clin Oncol 2019; 145(6): 1449-60.
33. Kim YA, Kim YS, Song W. Autophagic response to a single bout of moderate exercise in murine skeletal muscle. J Physiol Biochemi 2012; 68(2): 229-35.
34. Kavazis AN, Smuder AJ, Powers SK. Effects of short_term endurance exercise training on acute doxorubicin_induced foxO transcription in cardiac and skeletal muscle. J Appl Physiol 2014; 117(3): 223-30.
35. Li FH, Li T, Su YM, Ai JY, Duan R, Liu TC. Cardiac basal autophagic activity and increased exercise capacity. J Physiol Sci 2018; 68(6): 729-42.
36. Safhi MM, Anwer T, Khan G, Siddiqui R, Moni Sivakumar S, Alam MF. The combination of canagliflozin and omega-3 fatty acid ameliorates insulin resistance and cardiac biomarkers via modulation of inflammatory cytokines in type 2 diabetic rats. Korean J Physiol Pharmacol 2018; 22(5): 493-501.
37. Khalili A, Nekooeian AA, Khosravi MB. Oleuropein improves glucose tolerance and lipid profile in rats with simultaneous renovascular hypertension and type 2 diabetes. J Asian Nat Prod Res 2017; 19(10): 1011-21.
38. Sherafati Moghadam M, Salesi M, Daryanoosh F, Hemati Nafar M, Fallahi A. The Effect of 4 Weeks of High Intensity Interval Training on the Content of AKT1, mTOR, P70S6K1 and 4E-BP1 in Soleus Skeletal Muscle of Rats with Type 2 Diabetes: An Experimental Study. J Rafsanjan Uni Med Sci 2018; 17(9): 843-54. [in Persian]
39. Garcia NF, Sponton AC, Delbin MA, Parente JM, Castro MM, Zanesco A, et al. Metabolic parameters and responsiveness of isolated iliac artery in LDLr-/-mice: role of aerobic exercise training. Am J Cardiovasc Dis 2017; 7(2): 64-71.
40. Aghaei N, Sherafati Moghadam M, Daryanoosh F, Shadmehri S, Jahani Golbar S. The effect of 4 weeks’ aerobic training on the content of mTORC1 signaling pathway proteins in heart tissue of type 1 diabetes rats. Iran J Dia Metab 2019; 18(3): 116-25. [in Persian]
41. Khani M, Motamedi P, Dehkhoda MR, Nikukheslat SD, Karimi P. Effect of thyme extract supplementation on lipid peroxidation, antioxidant capacity, PGC-1α content and endurance exercise performance in rats. J Int Soc Sports Nutr 2017; 14 (1): 1-8.
42. Lee Y, Kwon I, Jang Y, Song W, Cosio-Lima LM, Roltsch MH. Potential signaling pathways of acute endurance exercise-induced cardiac autophagy and mitophagy and its possible role in cardioprotection. J Physiol Sci 2017; 67(6): 639-54.
43. Smuder AJ, Kavazis AN, Min K, Powers SK. Doxorubicin-induced markers of myocardial autophagic signaling in sedentary and exercise trained animals. J Appl Physiol 2013; 115(2): 176-85.
44. Holloway TM, Bloemberg D, Da Silva ML, Simpson JA, Quadrilatero J, Spriet LL. High intensity interval and endurance training have opposing effects on markers of heart failure and cardiac remodeling in hypertensive rats. PloS One 2015; 10(3): e0121138.
45. Sun M, Huang C, Wang C, Zheng J, Zhang P, Xu Y, et al. Ginsenoside Rg3 improves cardiac mitochondrial population quality: mimetic exercise training. Biochem Biophys Res Commun 2013; 441(1): 169-74.
46. Laplante M, Sabatini DM. mTOR signaling at a glance. J Cell Sci 2009; 122(20): 3589-94.
47. Laplante M, Sabatini DM. mTOR signaling in growth control and disease. Cell 2012; 149(2): 274-93.
48. Li FH, Tao Li JY, Sun L, Min Z, Duan R, Zhu L, et al. Beneficial Autophagic Activities, Mitochondrial Function, and Metabolic Phenotype Adaptations Promoted by High-Intensity Interval Training in a Rat Model. Front Physiol 2018; 9: 571.
49. Kubli DA, Gustafsson ÅB. Unbreak my heart: targeting mitochondrial autophagy in diabetic cardiomyopathy. Antioxid Redox Signal 2015; 22(17): 1527-44.
50. Riehle C, Wende AR, Sena S, Pires KM, Pereira RO, Zhu Y, et al. Insulin receptor substrate signaling suppresses neonatal autophagy in the heart. J Clin Invest 2013; 123(12): 5319-33.
51. Xu X, Hua Y, Sreejayan N, Zhang Y, Ren J. Akt2 knockout preserves cardiac function in high-fat diet-induced obesity by rescuing cardiac autophagosome maturation. J Mol Cell Biol 2012; 5(1): 61-3.
52. Frühbeis C, Helmig S, Tug S, Simon P, Krämer-Albers EM. Physical exercise induces rapid release of small extracellular vesicles into the circulation. J Extracell Vesicles 2015; 4(1): 28239.
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA


XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Jokar M, Sherafati-Moghadam M. The effect of 4 weeks high intensity interval training (HIIT) on the content of FOXO3a Beclin-1 proteins in the left ventricular heart tissue with type 2 diabetic rats. Feyz 2020; 24 (2) :160-169
URL: http://feyz.kaums.ac.ir/article-1-3975-en.html


Creative Commons License
This open access journal is licensed under a Creative Commons Attribution-NonCommercial ۴.۰ International License. CC BY-NC ۴. Design and publishing by Kashan University of Medical Sciences.
Copyright ۲۰۲۳© Feyz Medical Sciences Journal. All rights reserved.
Volume 24, Issue 2 (Bimonthly 2020) Back to browse issues page
مجله علوم پزشکی فیض Feyz Medical Sciences Journal
Persian site map - English site map - Created in 0.05 seconds with 46 queries by YEKTAWEB 4645