[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Indexing Sources::
Guide for Authors::
Online Submission::
Ethics::
Articles archive::
For Reviewers::
Contact us::
::
Basic and Clinical Biochemistry and Nutrition
..
DOAJ
..
CINAHL
..
EBSCO
..
IMEMR
..
ISC
..
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
enamad
..
:: Volume 23, Issue 6 (Bimonthly 2019) ::
Feyz 2019, 23(6): 615-626 Back to browse issues page
The effect of endurance training in air pollution on the expression of brain cortex PGC-1α and Atf2 genes in Wistar male rats
Aliakbar Steki , Vahid Valipour , Ehsan Ghahramanlo , Mehdi Kargarfard
Department of Exercise Physiology, Faculty of Literature and Human Sciences, Lorestan University, Khoramabad, I.R. Iran. , valipour.v@lu.ac.ir
Abstract:   (2158 Views)
Background: Mitochondrial biogenesis is related to Ppargc1α and Atf2 genes. Endurance training through PGC-1α and Atf2 induces mitochondrial biogenesis, but it seems that air pollution has the opposite effect. Therefore, this study aimed to investigate the effect of endurance training in air pollution on PGC-1α and Atf2 genes expression in brain cortex mitochondria of Wistar male rats.
Materials and Methods: In this experimental study, 32 eight-week-old rats (weight: 180.77±10.65) divided into four groups: control, training, pollution, and training+pollution. In order to expose animals to air pollution, a 9000-liter chamber was used. The training was performed for eight weeks. 24 hours after last session, brain cortex was extracted. The expression of genes was measured using RT-PCR. The two-way ANOVA was used to analyze the data.
Results: Atf2 gene expression was significantly different in the training+pollution group compared to the control group (P=0.04). In addition, Atf2 gene expression was significantly different in the training group compared to the control group (P<0.01). Also, PGC-1α gene expression was significantly different in the training group compared to the control group (P<0.01). Also, PGC-1α gene expression was significantly different in the pollution group compared to the control group (P<0.01). But, PGC-1α gene expression was not significantly different in the training+pollution group compared to the control group (P<0.05).
Conclusion: Pollution has no effect on Atf2 gene expression, but training in both conditions increases it. Also, pollution reduces PGC-1α gene expression but training increases it. Therefore, it seems that expression of PGC-1α in air pollution is also influenced by other factors.
Keywords: Air pollution, Mitochondria biogenesis, Endurance training, PGC-1α, Atf2
Full-Text [PDF 454 kb]   (1009 Downloads)    
Type of Study: Research | Subject: General
Received: 2019/08/12 | Revised: 2020/02/12 | Accepted: 2019/11/10 | Published: 2020/02/12
References
1. Reilly T, Waterhouse JM. Sport exercise and environmental physiology. 1th ed. Liverpool: Churchill Livingstone; 2004. p. 256.
2. Guo P, Pi H, Xu S, Zhang L, Li Y, Li M, et al. Melatonin Improves mitochondrial function by promoting MT1/SIRT1/PGC-1 alpha-dependent mitochondrial biogenesis in cadmium-induced hepatotoxicity in vitro. Toxicol Sci 2014; 142(1): 182-95.
3. Guo Z, Hong Z, Dong W, Deng C, Zhao R, Xu J, et al. PM2. 5-Induced Oxidative Stress and Mitochondrial Damage in the Nasal Mucosa of Rats. Int J Environ Res Public Health 2017; 14(2): 134.
4. Kymisis M, Hadjistavrou K. Short-term effects of air pollution levels on pulmonary function of young adults. Pul Med 2008; 9(2): 136-48.
5. Giles LV, Koehle MS. The Health Effects of Exercising in Air Pollution. Sports Med 2014; 44: 223–49.
6. Brook RD. Is air pollution a cause of cardiovascular disease? Updated review and controversies. Rev Environ Health 2007; 22(2): 115-38.
7. Pierson WE, Covert DS, Koenig JQ, Namekata T, Kim YS. Implications of air pollution effects on athletic performance. Med Sci Sports Exerc 1986; 18(3): 322-7.
8. Ku T, Ji X, Zhang Y, Li G, Sang N. PM2. 5, SO2 and NO2 co-exposure impairs neurobehavior and induces mitochondrial injuries in the mouse brain. Chemosphere 2016; 163: 27-34.
9. Qin G, Wang J, Huo Y, Yan H, Jiang C, Zhou J, et al. Sulfur dioxide inhalation stimulated mitochondrial biogenesis in rat brains. Toxicology 2012; 300(1-2): 67-74.
10. Carlisle A, Sharp N. Exercise and outdoor ambient air pollution. Br J Sports Med 2001; 35(4): 214-22.
11. Li N, Sioutas C, Cho A, Schmitz D, Misra C, Sempf J, et al. Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage. Environ Health Perspect 2003; 111(4): 455-60.
12. O'Hagan KA, Cocchiglia S, Zhdanov AV, Tambuwala MM, Cummins EP, Monfared M, et al. PGC-1α is coupled to HIF-1α-dependent gene expression by increasing mitochondrial oxygen consumption in skeletal muscle cells. Proc Natl Acad Sci 2009; 106(7): 2188-93.
13. Ku T, Ji X, Zhang Y, Li G, Sang N. PM 2.5, SO 2 and NO 2 co-exposure impairs neurobehavior and induces mitochondrial injuries in the mouse brain. Chemosphere 2016; 163: 27-34.
14. Arany Z. PGC-1 coactivators and skeletal muscle adaptations in health and disease. Curr Opin Gen Dev 2008; 18(5): 426-34.
15. Fernandez-Marcos PJ, Auwerx J. Regulation of PGC-1α, a nodal regulator of mitochondrial biogenesis. Am J Clin Nutr 2011; 93(4): 884-90.
16. Egan B, Zierath JR. Exercise metabolism and the molecular regulation of skeletal muscle adaptation. Cell metab 2013; 17(2): 162-84.
17. Arabmomeni A, Mohebbi H, Riasi A, Marandi M. Effect of Intermittent Training on Oxidative and Glycolytic Capacity in Rat Skeletal Muscles. SSU_J 2014; 22(5): 1554-66. [in Persian]
18. Safdar A, Little JP, Stokl AJ, Hettinga BP, Akhtar M, Tarnopolsky MA. Exercise increases mitochondrial PGC-1α content and promotes nuclear-mitochondrial cross-talk to coordinate mitochondrial biogenesis. J Biol Chem 2011; 286(12): 10605-17.
19. Pilegaard H, Saltin B, Neufer PD. Exercise induces transient transcriptional activation of the PGC‐1α gene in human skeletal muscle. J Physiol 2003; 546(3): 851-8.
20. Kargarfard M, Shariat A, Shaw BS, Shaw I, Lam ET, Kheiri A, et al. Effects of polluted air on cardiovascular and hematological parameters after progressive maximal aerobic exercise. Lung 2015; 193(2): 275-81. [in Persian]
21. Pak Rad B, Agha Alinejad H, Zamani A, Fashi M, Rezaei Seraji B, Rajabi Z. Study Of Effect Of Aerobic Exercise In Particulate Air Pollution Tlr4 And Il-1β Genes Expression In Male Wistar Rats’ Heart Tissue. Sport Physiol 2016; 8(173): 77-99. ]in Persian[
22. Shavandi N, Saremi A, Moeeni L, Parastesh M, Ghorbani A, Heidarpoor R. The comparison of the responses of lung function indices to aerobic and anaerobic exercises in polluted air. Arak Medical University Journal 2010; 13(2): 91-99. ]in persian[
23. Yan W, Ji X, Shi J, Li G, Sang N. Acute nitrogen dioxide inhalation induces mitochondrial dysfunction in rat brain. Environ Res 2015; 138: 416-24.
24. Kregel KC, Allen DL, Booth FW, Fleshner MR, Henriksen EJ, Musch T, et al. Resource book for the design of animal exercise protocols. American Physiological Society; 2006. p. 85.
25. Leandro CG LA, Hirabara SM, Manhães-de-Castro R. A program of moderate physical training for Wistar rats based on maximal oxygen consumption. J Strength Cond Res 2007; 21(3): 751.
26. Rozier S, Viennot L. Students’ reasonings in thermodynamics. Int J Sci Educ 1991; 13(2): 159-70.
27. Bergeron R, Ren JM, Cadman KS, Moore IK, Perret P, Pypaert M, et al. Chronic activation of AMP kinase results in NRF-1 activation and mitochondrial biogenesis. Am J Physiol Endocrinol Metab 2001; 281(6): 1340-6.
28. Czubryt MP, Olson EN. Balancing contractility and energy production: the role of myocyte enhancer factor 2 (MEF2) in cardiac hypertrophy. Recent Prog Horm Res 2004; 59(1):105-24.
29. Fernandez-Marcos PJ, Auwerx J. Regulation of PGC-1α, a nodal regulator of mitochondrial biogenesis. Am J Clin Nutr 2011; 93(4): 884-90.
30. Lezi E, Burns JM, Swerdlow RH. Effect of high-intensity exercise on aged mouse brain mitochondria, neurogenesis, and inflammation. Neurobiol Aging 2014; 35(11): 2574-83.
31. Bayod S, Guzmán-Brambila C, Sanchez-Roige S, Lalanza JF, Kaliman P, Ortuño-Sahagun D, et al. Voluntary exercise promotes beneficial anti-aging mechanisms in SAMP8 female brain. J Mol Neurosci 2015; 55(2): 525-32.
32. Boveris A, Navarro A. Systemic and mitochondrial adaptive responses to moderate exercise in rodents. Free Radic Biol Med 2008; 44(2): 224-9.
33. Zhang Q, Wu Y, Zhang P, Sha H, Jia J, Hu Y, et al. Exercise induces mitochondrial biogenesis after brain ischemia in rats. Neuroscience 2012; 205: 10-7.
34. Lezi E, Lu J, Selfridge JE, Burns JM, Swerdlow RH. Lactate administration reproduces specific brain and liver exercise-related changes. J Neurochem 2013; 127(1): 91-100.
35. Steiner JL, Murphy EA, McClellan JL, Carmichael MD, Davis JM. Exercise training increases mitochondrial biogenesis in the brain. J Appl Physiol 2011; 111(4): 1066-71.
36. Huang AM, Jen C, Chen H, Yu L, Kuo Y-M, Chen HI. Compulsive exercise acutely upregulates rat hippocampal brain-derived neurotrophic factor. J Neural Transm 2006; 113(7): 803-11.
37. Xu X, Rao X, Wang T-Y, Jiang SY, Ying Z, Liu C, et al. Effect of co-exposure to nickel and particulate matter on insulin resistance and mitochondrial dysfunction in a mouse model. Part Fibre Toxicol 2012; 9(1): 40-46.
38. Morgan TE, Davis DA, Iwata N, Tanner JA, Snyder D, Ning Z, et al. Glutamatergic neurons in rodent models respond to nanoscale particulate urban air pollutants in vivo and in vitro. Environ Health Perspect 2011; 119(7): 1003-9.
39. Win-Shwe T-T, Fujimaki H, Fujitani Y, Hirano S. Novel object recognition ability in female mice following exposure to nanoparticle-rich diesel exhaust. Toxicol Appl Pharmacol 2012; 262(3): 355-62.
40. Fonken LK, Xu X, Weil ZM, Chen G, Sun Q, Rajagopalan S, et al. Air pollution impairs cognition, provokes depressive-like behaviors and alters hippocampal cytokine expression and morphology. Mol Psychiatry 2011; 16(10): 987-95.
41. Zanchi AC, Saiki M, Saldiva PHN, Tannhauser Barros HM, Rhoden CR. Hippocampus lipid peroxidation induced by residual oil fly ash intranasal instillation versus habituation to the open field. Inhal toxicol 2010; 22(1): 84-8.
42. Win-Shwe TT, Mitsushima D, Yamamoto S, Fujitani Y, Funabashi T, Hirano S, et al. Extracellular glutamate level and NMDA receptor subunit expression in mouse olfactory bulb following nanoparticle-rich diesel exhaust exposure. Inhal Toxicol 2009; 21(10): 828-36.
43. Bos I, De Boever P, Panis LI, Meeusen R. Physical activity, air pollution and the brain. Sports Med 2014; 44(11): 1505-18.
44. Szyszkowicz M, Rowe B, Kaplan G. Ambient sulphur dioxide exposure and emergency department visits for migraine in Vancouver, Canada. Int J Occup Med Environ Health 2009; 22(1): 7-12.
45. Kim E, Park H, Hong Y-C, Ha M, Kim Y, Kim B-N, et al. Prenatal exposure to PM10 and NO2 and children's neurodevelopment from birth to 24 months of age: Mothers and Children's Environmental Health (MOCEH) study. SNU Med 2014; 481: 439-45.
46. Calderón-Garcidueñas L, Kulesza RJ, Doty RL, D'angiulli A, Torres-Jardón R. Megacities air pollution problems: Mexico City Metropolitan Area critical issues on the central nervous system pediatric impact. Environ Res 2015; 137: 157-69.
47. Lodovici M, Bigagli E. Oxidative stress and air pollution exposure. J Toxicol 2011; 2011: 1-11.
48. Zhao M, New L, Kravchenko VV, Kato Y, Gram H, di Padova F, et al. Regulation of the MEF2 family of transcription factors by p38. Mol Cell Biol 1999; 19(1): 21-30.
49. Akimoto T, Pohnert SC, Li P, Zhang M, Gumbs C, Rosenberg PB, et al. Exercise stimulates Pgc-1α transcription in skeletal muscle through activation of the p38 MAPK pathway. J Biol Chem 2005; 280(20): 19587-93.
50. Huguier S, Baguet J, Perez S, Van Dam H, Castellazzi M. Transcription factor ATF2 cooperates with v-Jun to promote growth factor-independent proliferation in vitro and tumor formation in vivo Mol Cel Biol 1998; 18(12): 7020-9.
51. Li M, Zhang D, Ge X, Zhu X, Zhou Y, Zhang Y, et al. TRAF6-p38/JNK-ATF2 axis promotes microglial inflammatory activation. ExpCell Res 2019; 376(2): 133-48.
52. Levesque S, Taetzsch T, Lull ME, Kodavanti U, Stadler K, Wagner A, et al. Diesel exhaust activates and primes microglia: air pollution, neuroinflammation, and regulation of dopaminergic neurotoxicity. Environ Health Perspect 2011; 119(8): 1149-55.
53. Gerlofs-Nijland ME, van Berlo D, Cassee FR, Schins RP, Wang K, Campbell A. Effect of prolonged exposure to diesel engine exhaust on proinflammatory markers in different regions of the rat brain. Particle Fibre Toxicol 2010; 7(1):12.
54. Yu T, Li YJ, Bian AH, Zuo HB, Zhu TW, Ji SX, et al. The regulatory role of activating transcription factor 2 in inflammation. Mediators Inflamm 2014; 2014: 1-10.
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA


XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Steki A, Valipour V, Ghahramanlo E, Kargarfard M. The effect of endurance training in air pollution on the expression of brain cortex PGC-1α and Atf2 genes in Wistar male rats. Feyz 2019; 23 (6) :615-626
URL: http://feyz.kaums.ac.ir/article-1-3955-en.html


Creative Commons License
This open access journal is licensed under a Creative Commons Attribution-NonCommercial ۴.۰ International License. CC BY-NC ۴. Design and publishing by Kashan University of Medical Sciences.
Copyright ۲۰۲۳© Feyz Medical Sciences Journal. All rights reserved.
Volume 23, Issue 6 (Bimonthly 2019) Back to browse issues page
مجله علوم پزشکی فیض Feyz Medical Sciences Journal
Persian site map - English site map - Created in 0.05 seconds with 46 queries by YEKTAWEB 4645