:: Volume 20, Issue 2 (Bimonthly 2016) ::
Feyz 2016, 20(2): 157-164 Back to browse issues page
Effects of different concentrations of sucrose and fetal bovine serum on viability rate of lamb spermatogonial stem cells before and after cryopreservation
Ali Asghar Moghaddam , Peyman Rahimi-Feyli , Zahra Nikousefat , Sajad Zarghami
Department of Clinical Sciences, Faculty of Veterinary Medicine, Razi University, Kermanshah, I. R. Iran. , peymanrahimi@razi.ac.ir
Abstract:   (4301 Views)

Background: Spermatogonial stem cells (SSCs) have diverse applications in reproductive medicine and biotechnology. Cryopreservation is the well-known method for long-term storage of these cells. The aim of this study was to investigate the effect of different concentrations of fetal bovine serum (FBS) and Sucrose on the viability rate of spermatogonial cells.

Materials and Methods: Testicular cells of pre-pubertal lambs were separated in a two-step enzymatic isolation and purified by differential plating. Then, the cells were divided in 6 groups. Groups 1, 2 and 3 were treated with FBS (10%) and Sucrose (0.07, 0.14 and 0.21 molar concentration (M) ) and groups 4, 5 and 6 with FBS (20%) and Sucrose (0.07, 0.14 and 0.21 M), respectively. The viability rate of the cells was evaluated immediately after isolation, addition of cryoprotectant agents and thawing procedures. Identification of spermatogonial cells in the culture was performed using the   immunocytochemistry staining against PGP9.5.

Results: The results showed that cryoprotectant do not have any harmful effects on lamb´s SSCs. Moreover, viability rate of the cells in freezing media containing FBS (10%) is significantly higher than the media containing FBS (20%). Furthermore, increasing concentrations of Sucrose (0.07, 0.14 and 0.21 M)   had no beneficial effect on the spermatogonial viability rate.

Conclusion: It was concluded that freezing media containing dimethyl sulfoxide (10%) and FBS (10%) and Sucrose (0.07 M) is appropriate for cryopreservation of lamb spermatogonial cells.

Keywords: Lamb Spermatogonia, Cryopreservation, Sucrose, Fetal bovine serum, PGP9.5
Full-Text [PDF 265 kb]   (1532 Downloads)    
Type of Study: Research | Subject: medicine, paraclinic
Received: 2016/06/19 | Revised: 2017/08/1 | Accepted: 2016/06/19 | Published: 2016/06/19
References
1. De Rooij DG, Grootegoed JA. Spermatogonial stem cells. Curr Opin in Cell Biol 1998: 10(6): 694-701.
2. Lok D, Weenk D, De Rooij DG. Morphology, proliferation, and differentiation of undifferentiated spermatogonia in the Chinese hamster and the ram. Anat Rec 1982; 203(1): 83-99.
3. Izadyar F, Den Ouden K, Stout TA, Stout J, Coret J, Lankveld DP, et al. Autologous and homologous transplantation of bovine spermatogonial stem cells. Reproduction 2003; 126(6): 765-74.
4. Dann CT, Alvarado AL, Molyneux LA, Denard BS, Garbers DL, Porteus MH. Spermatogonial stem cell self-renewal requires OCT4, a factor downregulated during retinoic acid-induced differentiation. Stem Cells 2008: 26(11): 2928-37.
5. Oatley JM, Oatley MJ, Avarbock MR, Tobias JW, Brinster RL. Colony stimulating factor 1 is an extrinsic stimulator of mouse spermatogonial stem cell self-renewal. Development 2009: 136(7): 1191-99.
6. Oatley JM, Avarbock MR, Brinster RL. Glial cell line-derived neurotrophic factor regulation of genes essential for self-renewal of mouse spermatogonial stem cells is dependent on Src family kinase signaling. J Biol Chem 2007: 282(35): 25842-51.
7. Dym M, Kokkinaki M, He Z. Spermatogonial stem cells: mouse and human comparisons. Birth Defects Res C Embryo Today 2009: 87(1): 27–34.
8. Honaramooz A, Behboodi E, Blash S, Megee SO, Dobrinski I. Germ cell transplantation in goats. Mol Reprod Dev 2003; 64(4): 422-28.
9. Kubota H, Brinster RL. Culture of rodent spermatogonial stem cells, male germline stem cells of the postnatal animal. Methods Cell Biol 2008; 86: 59-84.
10. Kanatsu-Shinohara M, Ogonuki N, Inoue K, Miki H, Ogura A, Toyokuni S, et al. Long-term proliferation in culture and germline transmission of mouse male germline stem cells. Biol Reprod 2003: 69(2): 612-16.
11. Izadyar F, Spierenberg GT, Creemers LB, den Ouden K, de Rooij DG. Isolation and purification of type A spermatogonia from the bovine testis. Reproduction 2002: 124(1): 85-94.
12. Hill JR, Dobrinski I. Male germ cell transplantation in livestock. Reprod Fertil Dev 2006: 18(1-2) 13-8.
13. Meachem S, von Schonfeldt V, Schlatt S. Spermatogonia: stem cells with a great perspective. Reproduction 2001; 121(6): 825-34.
14. Zeisberger SM, Schulz JC, Mairhofer M, Ponsaerts P, Wouters G, Doerr D, et al. Biological and physicochemical characterization of a serum- and xeno-free chemically defined cryopreservation procedure for adult human progenitor cells. Cell Transplant 2011; 20(8):1241-57.
15. Yang PF, Hua TC, Tsung HC, Cheng QK, Cao YL. Effective Cryopreservation of Human Embryonic Stem Cells By Programmed Freezing. Conf Proc IEEE Eng Med Biol Soc 2005; 1(1): 482-5.
16. Friedler S, Giudice LC, Lamb EJ. Cryopreservation of embryos and ova. Fertil Steril 1988; 49(5): 743- 64.
17. Yang Y, Steeg J, Honaramooz A. The effects of tissue sample size and media on short-term hypothermic preservation of porcine testis tissue. Cell Tissue Res 2010: 340(2): 397-406.
18. Lee YA, Kim YH, Ha SJ, Kim BJ, Kim KJ, Jung MS, et al. Effect of sugar molecules on the cryopreservation of mouse spermatogonial stem cells. Fertil Steril 2014; 101(4): 1165-75.
19. Lee YA, Kim YH, Kim, BJ, Jung MS, Auh JH, Seo JT, et al. Cryopreservation of mouse spermatogonial stem cells in dimethylsulfoxide and polyethylene glycol. Biol Reprod 2013; 89(5): 109.
20. Van Pelt AM, Morena AR, Van Dissel Emiliani FM, Boitani C, Gaemers IC, De Rooij DG, et al. Isolation of the synchronized a spermatogonia from adult vitamin A-deficient rat testes. Biol Reprod 1996; 55(2): 439-44.
21. Heidari B, Rahmati-Ahmadabadi M, Akhondi MM, Zarnani AH, Jeddi-Tehrani M, Shirazi A, et al. Isolation, identification, and culture of goat spermatogonial stem cells using c-kit and PGP9.5 markers. J Assist Reprod Genet 2012; 29(10) 1029-38.
22. Janat-Alipoor F, Sadighi Gilani, Eftekhari-Yazdi, Daneshzadeh MT, Khakzad H. The Effect of FBS Concentration on Cryopreservation of Isolated Spermatogonial Cells from Neonatal Mouse by MACS Method. J Iran Anat Sci 2010; 7(28-29): 113-20. [in Persian]
23. Orief Y, Schultze-Mosgau A, Dafopoulos K, Al-Hasani S. Vitrification: will it replace the conventional gametecryopreservation techniques? Middle East Fertil Soc J 2005: 10(3): 171-84.
24. Huang J, Li Q, Zhao R, Li W, Han Z, Chen X, et al. Effect of sugars on maturation rate of vitrified-thawed immature porcine oocytes. Anim Reprod Sci 2008; 106(1-2): 25-35.
25. Fahy GM, MacFarlane DR, Angell CA, Meryman HT. Vitrification as an approach to cryopreservation. Cryobiology 1984; 21(4): 407-26.
26. Kaul G, Kaur J, Rafeeqi TA. Ultrasound Guided Transplantation of Enriched and Cryopreserved Spermatogonial Cell Suspension in Goats. Reprod Domest Anim 2009; 45(6): 249-54.
27. Jain J, Paulson RJ. Oocyte cryopreservation. Fertil Steril 2006; 86(4 Suppl): 1037-46.
28. Sutton RL. Critical cooling rates for aqueous cryoprotectants in the presence of sugars and polysaccharides. Cryobiology 1992; 29(5): 585-98.
29. Kasai M, Mukaida T. Cryopreservation of animal and human embryos by vitrification. Reprod Biomed Online 2004: 9(2): 164-7.
30. Redden E, Davey R, Borjigin U, Hutton K, Hinch G, Hope S, et al. Large quantity cryopreservation of bovine testicular cells and its effect on enrichment of type a spermatogonia. Cryobiology 2009; 58(2): 190-95.
31. Rahimi-Feyli P, Tajik P, Shafiei Sh, Dodel M, Arbabi F. The effect of poly L-lactic acid nanofiber on the induction of colony formation of frozen-thawed bovine spermatogonial stem cells in vitro. Feyz 2015: 19(1): 15-23. [in Persian]
32. Wang P, Li Y, Hu XC, Cai XL, Hou LP, Wang YF, et al. Cryoprotective effects of low-density lipoproteins, trehalose and soybean lecithin on murine spermatogonial stem cells. Zygote 2014; 22(2): 158-63.
33. Abrishami M, Anzar M, Honaramooz A. Cryopreservation of immature porcine testis tissue to maintain its developmental potential after xenografting into recipient mice. Theriogenology 2010; 73(1): 86–9.
34. Wu J, Hu T, Guo B, Yue Z, Yang Z, Zhang X. Cryopreservation of adult bovine testicular tissue for spermatogonia enrichment. Cryo Letters 2011; 32(5): 402-9.
35. Yasuhiro K, Daiji E, Toshihiko I. Expression of protein gene product 9.5, a neuronal ubiquitin C-terminal hydrolase, and its developing change in sertoli cells of mouse testis. Mol Reprod Dev 1999; 54(4): 333–41.
36. Zhang Z, Hill J, Holland M, Kurihara Y, Loveland KL. Bovine sertoli cells colonize and form tubules in murine hosts following transplantation and grafting procedures. J Androl 2008; 29(4): 418–30.
37. Rodriguez-Sosa JR, Dobson H, Hahnel A. Isolation and transplantation of spermatogonia in sheep. Theriogenology 2006; 66(9): 2091-103.
38. Von Kopylow K, Kirchhoff C, Jezek D, Schulze W, Feig C, Primig M. Screening for biomarkers of spermatogonia within the human testis: a whole genome approach. Hum Reprod 2010; 25(5): 1104–12.
39. Zeng W, Avelar GF, Rathi R, Franca LR, Dobrinski I. The length of the spermatogenic cycleis conserved in porcine and ovine testis xenografts. J Androl 2006; 27(4): 527-33.


XML   Persian Abstract   Print



Creative Commons License
This open access journal is licensed under a Creative Commons Attribution-NonCommercial ۴.۰ International License. CC BY-NC ۴. Design and publishing by Kashan University of Medical Sciences.
Copyright ۲۰۲۳© Feyz Medical Sciences Journal. All rights reserved.
Volume 20, Issue 2 (Bimonthly 2016) Back to browse issues page