[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Indexing Sources::
Guide for Authors::
Online Submission::
Ethics::
Articles archive::
For Reviewers::
Contact us::
AI::
::
Basic and Clinical Biochemistry and Nutrition
..
DOAJ
..
CINAHL
..
EBSCO
..
IMEMR
..
ISC
..
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
enamad
..
:: ::
Back to the articles list Back to browse issues page
Effect of Eight Weeks of Capsaicin Supplementation on the Expression of Runx2 and ALP Genes in Bone Tissue of Aged Male Wistar Rats
Vajihe Varzandeh , Yaser Kazemzadeh * , Sanaz Mirzayan Shanjani , Hossein Shirvani
Department of Exercise Physiology, Islamshahr Branch, Islamic Azad University, Islamshahr, Iran , yaser.kazemzadeh@yahoo.com
Abstract:   (162 Views)
Background and Aim: Capsaicin, known for its anti-inflammatory and antioxidant properties, plays a critical role in regulating the expression of genes associated with the health of various tissues, including bone. This study aimed to evaluate the effect of eight weeks of capsaicin supplementation on the expression of Runx2 and ALP genes in the bone tissue of aged male Wistar rats.
Methods: In this experimental study, 16 aged male Wistar rats were randomly assigned to two groups: capsaicin supplementation (n=8) and control (n=8). The supplementation group received capsaicin at a dose of 5 mg/kg body weight via oral gavage for eight weeks. Forty-eight hours after the final supplementation dose, the rats were anesthetized with intraperitoneal ketamine and xylazine and subsequently euthanized. Femoral bone tissue samples were collected under sterile conditions, and the expression of Runx2 and ALP genes was assessed using RT-PCR.
Results: Runx2 gene expression was significantly increased in the capsaicin supplementation group compared to the control group (fold change = 3.69%, P=0.038). In contrast, ALP gene expression showed a non-significant increase in the supplementation group (fold change = 4.28%, P=0.029).
Conclusion: Eight weeks of capsaicin supplementation significantly upregulated Runx2 gene expression in the bone tissue of aged rats. Given the pivotal role of Runx2 in osteogenesis, these findings suggest that capsaicin may contribute to improved bone mass in aged rats by enhancing Runx2 expression. Further studies are warranted to confirm these results.
Keywords: Capsaicin, Runx2, ALP, Bone Tissue, Aging
     
Type of Study: Research | Subject: General
Received: 2025/02/24 | Revised: 2025/08/12 | Accepted: 2025/07/16
References
1. Wawrzyniak A, Balawender K. Structural and metabolic changes in bone. Animals (Basel). 2022; 12(15): 1946. doi.10.3390/ani12151946 PMid:35953935 PMCid:PMC9367262
2. Maciel GBM, Maciel RM, Danesi CC. Bone cells and their role in physiological remodeling. Mol Biol Rep. 2023; 50(3):2857-63. doi.10.1007/s11033-022-08190-7 PMid:36609750
3. Huang H, Ma S, Xing X, Su X, Xu X, Tang Q, et al. Muscle-derived extracellular vesicles improve disuse-induced osteoporosis by rebalancing bone formation and bone resorption. Acta Biomater. 2023; 157:609-24. doi.10.1016/j.actbio.2022.12.019 PMid:36526242
4. Zhou R, Guo Q, Xiao Y, Guo Q, Huang Y, Li C, et al. Endocrine role of bone in the regulation of energy metabolism. Bone Res. 2021; 9(1):25. doi.10.1038/s41413-021-00142-4 PMid:34016950 PMCid:PMC8137703
5. De Villiers T, Goldstein S. Bone health 2022: an update. Climacteric. 2022; 25(1):1-3. doi.10.1080/13697137.2021.1965408 PMid:35041568
6. Kado DM, Browner WS, Blackwell T, Gore R, Cummings SR. Rate of bone loss is associated with mortality in older women: a prospective study. J Bone Miner Res. 2000; 15(10):1974-80. doi.10.1359/jbmr.2000.15.10.1974 PMid:11028450
7. Coll PP, Phu S, Hajjar SH, Kirk B, Duque G, Taxel P. The prevention of osteoporosis and sarcopenia in older adults. J Am Geriatr Soc. 2021; 69(5):1388-98. doi.10.1111/jgs.17043 PMid:33624287
8. Boros K, Freemont T. Physiology of ageing of the musculoskeletal system. Best Pract Res Clin Rheumatol. 2017; 31(2):203-17. doi.10.1016/j.berh.2017.09.003 PMid:29224697
9. Hojo H, Ohba S. Runt-related transcription factors and gene regulatory mechanisms in skeletal development and diseases. Curr Osteoporos Rep. 2023; 21(5):485-92. doi.10.1007/s11914-023-00808-4 PMid:37436583 PMCid:PMC10543954
10. Komori T. Molecular mechanism of Runx2-dependent bone development. Mol Cells. 2020;43(2):168-75.
11. Chawla V, Bundel P, Singh Y. ALP-Mimetic Cyclic Peptide Nanotubes: A Multifunctional Strategy for Osteogenesis and Bone Regeneration. Biomacromolecules. 2025. doi.10.1021/acs.biomac.4c01484 PMid:39952236
12. Sharma U, Pal D, Prasad R. Alkaline phosphatase: an overview. Indian J Clin Biochem. 2014; 29: 269-78. doi.10.1007/s12291-013-0408-y PMid:24966474 PMCid:PMC4062654
13. Vimalraj S. Alkaline phosphatase: Structure, expression and its function in bone mineralization. Gene. 2020; 754: 144855. doi.10.1016/j.gene.2020.144855 PMid:32522695
14. Akoa DM, Hélary C, Foda A, Chaussain C, Poliard A, Coradin T. Silicon impacts collagen remodelling and mineralization by human dental pulp stem cells in 3D pulp-like matrices. Dent Mater. 2024; 40(9):1390-9. doi.10.1016/j.dental.2024.06.021 PMid:38908960
15. Jang WG, Kim EJ, Kim DK, Ryoo HM, Lee KB, Kim SH, et al. BMP2 protein regulates osteocalcin expression via Runx2-mediated Atf6 gene transcription. J Biol Chem. 2012; 287(2):905-15. doi.10.1074/jbc.M111.253187 PMid:22102412 PMCid:PMC3256879
16. Rizzoli R, Chevalley T. Nutrition and Osteoporosis Prevention. Curr Osteoporos Rep. 2024; 22(6):515-22. doi.10.1007/s11914-024-00892-0 PMid:39322861 PMCid:PMC11499541
17. Zhang ZK, Guo X, Lao J, Qin YX. Effect of capsaicin-sensitive sensory neurons on bone architecture and mechanical properties in the rat hindlimb suspension model. J Orthop Transl. 2017; 10: 12-7. doi.10.1016/j.jot.2017.03.001 PMid:29662756 PMCid:PMC5822959
18. Abdillah AM, Yun JW. Capsaicin induces ATP-dependent thermogenesis via the activation of TRPV1/β3-AR/α1-AR in 3T3-L1 adipocytes and mouse model. Arch Biochem Biophys. 2024; 755:109975. doi.10.1016/j.abb.2024.109975 PMid:38531438
19. Rossi PA, Lira FS, Bezerra VR, Clark NW, Fukuda DH, Panissa VL. Acute response to capsiate supplementation at rest and during exercise on energy intake, appetite, metabolism, and autonomic function: A randomized trial. J Am Nutr Assoc. 2022; 41(6): 541-50. doi.10.1080/07315724.2021.1938294 PMid:34252340
20. Bingül MB, Gül M, Dundar S, Tanık A, Artas G, Polat ME. Enhanced Bone Healing Through Systemic Capsaicin Administration: An Experimental Study on Wistar Rats. Med Sci Monit. 2024; 30: e942485-1. doi.10.12659/MSM.942485 PMid:38814863 PMCid:PMC11149467
21. Chaudhary A, Gour JK, Rizvi SI. Capsaicin has potent anti-oxidative effects in vivo through a mechanism which is non-receptor mediated. Arch Physiol Biochem. 2022; 128(1):141-7. doi.10.1080/13813455.2019.1669056 PMid:31566018
22. Salvio G, Petrelli M, Paolini S, Baldini V, Sbaffi C, Basili S, et al. Gender-specific effects of capsiate supplementation on body weight and bone mineral density. J Endocrinol Invest. 2023; 46(7):1415-22. doi.10.1007/s40618-022-01999-w PMid:36609773
23. 23. Basak S, Hridayanka KSN, Duttaroy AK. Bioactives and their roles in bone metabolism of osteoarthritis: evidence and mechanisms on gut-bone axis. Front Immunol. 2024;14:1323233. doi.10.3389/fimmu.2023.1323233 PMid:38235147 PMCid:PMC10792057
24. Yan YF, Feng Y, Wang SM, Fang F, Chen HY, Zhen MX, et al. Potential actions of capsaicin for preventing vascular calcification of vascular smooth muscle cells. Heliyon. 2024; 10(6):e28021. doi.10.1016/j.heliyon.2024.e28021 PMid:38524547 PMCid:PMC10958412
25. Khonglim K, Chuenjitkuntaworn B, Tamura Y, Fuangtharnthip P. Effects of Capsaicin on Migration and Alkaline Phosphatase Activity of Dental Pulp Cells. Eur J Dent. 2024; 18(4):1157-63. doi.10.1055/s-0044-1782191 PMid:38698615 PMCid:PMC11479730
26. Oh TW, Ohta F. Dose-dependent effect of capsaicin on endurance capacity in rats. Br J Nutr. 2003; 90(3): 515-20. doi.10.1079/BJN2003919 PMid:13129456
27. Arabmomeni A, Salar Abdellah Hamid D. Investigating the Effects of Capsaicin Consumption on Weight Loss, Fat Percentage, and Ghrelin Hormone Levels of Adolescents with Overweight. J Jiroft Univ Med Sci. 2024; 11(2):1544-53. doi.10.61186/jjums.11.2.1544
28. 28. Torabi Palat Kaleh G, Sadeghi A, Abdi A. Synergistic Effects of the Aerobic Training and Capsaicin on Gene Expression in Rat Fed a High-Fat Diet. J Ardabil Univ Med Sci. 2022; 22(1):50-62. doi.10.52547/jarums.22.1.50
29. Mostafavian M, Abdi A, Mehrabani J, Barari A. Aerobic progressive training with capsaicin on adipose tissue of obese rats. Complement Med J. 2020; 10(2):106-17. doi.10.32598/cmja.10.2.627.4
30. Hemati Farsani Z, Banitalebi E, Faramarzi M, Bigham-Sadegh A. Endurance and Resistance Training on Bone Marrow miR-133a, Runx2, and Pparγ. Sport Physiol J. 2019; 11(42):61-78.
31. Khonglim K, Chuenjitkuntaworn B, Tamura Y, Fuangtharnthip P. Effects of Capsaicin on Dental Pulp Cells. Eur J Dent. 2024; 18(4):1157-63. doi.10.1055/s-0044-1782191 PMid:38698615 PMCid:PMC11479730
32. Bingül MB, Gul M, Dündar S, Sökmen K, Artas G, Polat ME, et al. Effect of Capsaicin and Titanium on Implant Osseointegration. Medicina (Kaunas). 2024; 60(7):1094 .doi.10.3390/medicina60071094 PMid:39064523 PMCid:PMC11279083
33. Huang KC, Chiang YF, Huang TC, Chen HY, Lin PH, Ali M, et al. Capsaicin alleviates cisplatin‐induced muscle loss. J Cachexia Sarcopenia Muscle. 2023; 14(1):182-97. doi.10.1002/jcsm.13120 PMid:36401337 PMCid:PMC9891949
34. Huang KC, Chiang YF, Ali M, Hsia SM. Cisplatin‐Induced Muscle Wasting: Molecular Mechanisms. J Cachexia Sarcopenia Muscle. 2025;16(3):e13817. doi.10.1002/jcsm.13817 PMid:40343378 PMCid:PMC12059472
35. Zhong B, Ma S, Wang DH. PAR2 protects against myocardial injury via TRPV1. Exp Ther Med. 2019; 18(5):3636-42.
36. Geng L, Ma X. Vascular Function Mediators: TRP Channels. TRP-Mediated Signal. 2025:147-70. doi.10.1201/9781003402732-9 PMCid:PMC10981837
37. Yadav P, Thakur O, Solanki N, Rachana R. Therapeutic Action of Capsaicin in Osteoarthritis Pain. Innov Adv Biotechnol. 2025:181-93. doi.10.1007/978-3-031-80189-1_14
38. Habiba ES, Fathelbab MH, Omar EM, ElAlkamy AM, Omar W, Harby SA. Capsaicin counteracts dexamethasone-induced osteoporosis. J Mol Histol. 2025; 56(3):1-15. doi.10.1007/s10735-025-10460-0 PMid:40425907
39. Bao M, Zhang K, Wei Y, Hua W, Gao Y, Li X, et al. Fatty acids in bone: potentials and mechanisms. Cell Prolif. 2020; 53(2): e12735. doi.10.1111/cpr.12735 PMid:31797479 PMCid:PMC7046483
40. Guo L, Wang R, Zhang K, Yuan J, Wang J, Wang X, et al. PINCH-1-Smurf1 axis in stem cell differentiation. J Cell Biol. 2019; 218(11): 3773-94. doi.10.1083/jcb.201902022 PMid:31578224 PMCid:PMC6829670
41. Fang L, Zhang G, Wu Y, Li Z, Gao S, Zhou L. SIRT6 prevents glucocorticoid-induced osteonecrosis. Oxid Med Cell Longev. 2022; 2022: 6360133. doi.10.1155/2022/6360133 PMid:36275897 PMCid:PMC9584736
42. Xiao F, Zhou Y, Liu Y, Xie M, Guo G. SIRT6 inhibits osteogenic differentiation. Med Sci Monit. 2019; 25: 8412. doi.10.12659/MSM.917118 PMid:31701920 PMCid:PMC6858786
43. Baran M, Miziak P, Stepulak A, Cybulski M. SIRT6 and histone deacetylation in cancer. Int J Mol Sci. 2023;25(1):497. doi.10.3390/ijms25010497 PMid:38203666 PMCid:PMC10779230
44. Hojo H. Emerging RUNX2-mediated regulatory networks in bone. Int J Mol Sci. 2023;24(3):2979. doi.10.3390/ijms24032979 PMid:36769300 PMCid:PMC9917854
45. Hu C, Yang Q, Huang X, Wang F, Zhou H, Su X. Mechanical microenvironment rescues osteogenic decline in aged jaw MSCs. ACS Biomater Sci Eng. 2024;10(7):4496-509. doi.10.1021/acsbiomaterials.4c00680 PMid:38860704
46. Shakibaei M, Shayan P, Busch F, Aldinger C, Buhrmann C, Lueders C, et al. Resveratrol modulates Sirt-1/Runx2 promoting osteogenesis. PLoS One. 2012; 7(4):e35712. doi.10.1371/journal.pone.0035712 PMid:22539994 PMCid:PMC3335081
47. Zhong Q. Resveratrol and calcium in spinal cord injury-induced osteoporosis. Naunyn Schmiedebergs Arch Pharmacol. 2024.
48. Pang X, Zhong Z, Jiang F, Yang J, Nie H. Juglans regia extract promotes osteogenesis via BMP2/Smad/Runx2. J Orthop Surg Res. 2022; 17(1):88. doi.10.1186/s13018-022-02949-1 PMid:35164786 PMCid:PMC8842536
49. Cai T, Sun D, Duan Y, Wen P, Dai C, Yang J, et al. WNT/β-catenin promotes osteogenic transdifferentiation via Runx2. Exp Cell Res. 2016; 345(2): 206-17. doi.10.1016/j.yexcr.2016.06.007 PMid:27321958
50. Unger Avila P, Padvitski T, Leote AC, Chen H, Saez-Rodriguez J, Kann M, et al. Gene regulatory networks in ageing. Nat Rev Nephrol. 2024; 20(9):616-33. doi.10.1038/s41581-024-00849-7 PMid:38867109
51. Arya PN, Saranya I, Selvamurugan N. Crosstalk between Wnt and BMP in osteogenic differentiation. World J Stem Cells. 2024; 16(2):102. doi.10.4252/wjsc.v16.i2.102 PMid:38455105 PMCid:PMC10915952
52. Zhang P, Liu Y, Wang Y, Zhang M, Lv L, Zhang X, et al. SIRT6 promotes osteogenesis via BMP signaling. Sci Rep. 2017; 7(1):10229. doi.10.1038/s41598-017-10323-z PMid:28860594 PMCid:PMC5578964
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA


XML   Persian Abstract   Print



Creative Commons License
This open access journal is licensed under a Creative Commons Attribution-NonCommercial ۴.۰ International License. CC BY-NC ۴. Design and publishing by Kashan University of Medical Sciences.
Copyright ۲۰۲۳© Feyz Medical Sciences Journal. All rights reserved.
Back to the articles list Back to browse issues page
مجله علوم پزشکی فیض Feyz Medical Sciences Journal
Persian site map - English site map - Created in 0.07 seconds with 46 queries by YEKTAWEB 4714