مطالعه اثر سیمواستاتین بر عملکرد و آسیب کلیه، متعاقب انسداد کامل یک طرفه حالب در موش صحرایی

۱* مهرداد نشاط قراملکی ، میرهادی خیاط نوری ، غفور موسوی

خلاصه

سابقه و هدف: هر گونه اختلال در جریان طبیعی ادرار تحت عنوان اوروپاتی انسدادی خوانده می شود. مهار کننده های رقابتی هیدروکسی متیل گلوتاریل کوآ ردوکتاز، همانند سیمواستاتین باعث کاهش لیپیدهای خون می شوند. از طرف دیگر نشان داده اند که استاتین ها دارای اثر حفاظتی در بعضی از بافتها در پی آسیبهای مختلف هستند. هدف از این مطالعه تعیین اثر سیمواستاتین بر عملکرد کلیه، در پی انسداد کامل یک طرفه حالب در موش صحرایی می باشد.

مواد و روشها: در این مطالعه ی تجربی، ۵۰ سر موش صحرایی نر نژاد SD به صورت تصادفی به پنج گروه ده تایی تقسیم شدند. در گروه نخست یا کنترل (control) حیوانات به صورت خوراکی روزانه به مدت پانزده روز حالال دارو، در گروه دوم (UUO) حیوانات بعد از انسداد یک طرفه حالب سیمواستاتین را با دوز mg/kg انسداد یک طرفه حالب سیمواستاتین را با دوز Mg/kg انسداد یک طرفه حالب سیمواستاتین را با دوز Sham) دو بار در روز به مدت پانزده روز (شروع یک روز قبل از جراحی) به صورت خوراکی دریافت کردند. در گروه چهارم (Sham) و پنجم (Sham/SIM) حیوانات همانند گروههای دوم و سوم جراحی شدند ولی مجرای حالب مسدود نشد. در روزهای صفر، سوم، هفتم و چهاردهم بعد از جراحی، نمونه خون اخذ و سرمها از نظر عیار سرمی کلسترول، اوره و کراتینین سرم مورد بررسی قرار گرفتند. برای تشخیص تغییرات بافتی در روز چهارده، بعد از جراحی، کلیه چپ بعد از تثبیت در فرمالین و انجام مراحل مختلف پاساژ بافتی به روش هماتوکسیلین – ائوزین رنگ آمیزی شد. دادهها با آنالیز واریانس یک طرفه و آزمون تعقیبی توکی و آزمون t زوجی مورد تجزیه و تحلیل قرار گرفت.

نتایج: نتایج مقایسه عوامل بیوشیمیایی نشان داد که میزان سرمی کلسترول، اوره و کراتینین در گروه کلوه دریافت کننده سیمواستاتین، میزان سرمی کلسترول، اوره و ۱۴ بعد از عمل به طور معنی دار در مقایسه با گروه کنترل افزایش یافت. در گروه دریافت کننده سیمواستاتین، میزان سرمی کلسترول، اوره و کراتینین در مقایسه با گروه UUO کاهش معنی دار نشان داد. نتایج مطالعات پاتولوژیک نیشان داد که در گروه UUO، آتروفی شدید گلومرولی و توبولی، اسکلروز پیرامون کپسول بومن و اتساع فضای آن، تجمع سلولهای تکهسته ای در بافت بینابینی کلیه، فیبروز زیرکپسولی به همراه تورم آبکی و نکروز سلولهای توبولی مشاهده می شود. تجویز سیمواستاتین در زمان انسداد حالب در گروه کلیه و گلومرولواسکلروزیس ناشی از انسداد حالب را در بافت کلیه کاهش دهد. تفاوت معنی دار بین گروه کنترل و Sham مشاهده نشد.

نتیجه گیری: نتایج مطالعه نشان داد که انسداد حالب باعث کاهش عملکرد کلیه و آسیب شدید بافت کلیه می شود. تجویز همزمان سیمواستاتین باعث کاهش آسیبهای بافتی ناشی از انسداد حالب شد. البته نقش حفاظتی سیمواستاتین در بیماریهای کلیوی انسان همانند UUO نیاز به تحقیقات بیشتری دارد.

واژگان کلیدی: سیمواستاتین، انسداد یک طرفه حالب، عملکرد کلیه، موش صحرایی

۱- استادیار گروه داخلی دانشکده دامپزشکی دانشگاه آزاد اسلامی واحد تبریز

۲- استادیار گروه فارماکولوژی دانشکده دامپزشکی دانشگاه آزاد اسلامی واحد تبریز

۳- استادیار گروه جراحی دانشکده دامپزشکی دانشگاه آزاد اسلامی واحد تبریز

* نویسنده مسوول: مهردا نشاط قراملکی

آ**درس**: تبریز، دانشکده دامیزشکی، دانشگاه آزاد اسلامی، گروه داخلی

يست الكترونيك: neshatpetvet@yahoo.com

تلفن: ۹۱۴ ۳۱۵ ۵۸۳۱

دورنویس: ۴۱۱ ۶۳۷۳۹۳۵

تاریخ دریافت: ۸۷/۴/۱۳

تاریخ پذیرش نهایی: ۸۷/۸/۵

مقدمه

هر گونه اختلال در جریان طبیعی ادرار و پی آمدهای ناشی از آن تحت عنوان اوروپاتی انسدادی خوانده می شود. انسداد و توقف ادرار در مسیر مجاری ادراری اهمیت زیادی در آسیب به عملکرد کلیه از دیدگاه اورولوژی دارد. هر نوع انسدادی در پایان مى تواند به هيدرونفروز، آتروفى و حتى تخريب كامل عملكرد كليه منجر شود. علاوه بر این، انسداد می تواند باعث عفونت شده و آسیب ناشی از انسداد را دو چندان نماید. بیماری های فراوانی باعث انسداد جریان ادرار می شود که پیشگویی آنها متغییر بوده و بسته به محل و شدت انسداد، واكنش بدن در مقابل اين پديده بیماری های مختلفی را به وجود می آورد. بنابراین اوروپاتی انسدادی باید به عنوان یک بیماری قلمداد شود تا در راهکارهای درمانی آن با مشكلات كمتری مواجه شویم. هر چه محل انسداد بالاتر باشد، كليه بيشتر تحت تاثير قرار مي گيرد. اثرات انسداد بـر عملکرد کلیه در درمان و پیشگویی آن دارای اهمیت است. ساز و كار دقيق تغييرات عملكرد كليه به طور دقيق مشخص نشده و مورد توجه پژوهشگران مختلف میباشد [۱، ۲]. مهارکننده های رقابتی هیدروکسی متیل گلوتاریل کوآ (HMG-CoA) ردوکتاز، آنالوگهای ساختمانی ۳- هیدروکسی- ۳ متیل گلوتاریل- کوآنزیم آ هستند. سیمواستاتین به صورت پیش داروی غیرفعال می باشد که در دستگاه گوارش به مشتقات بتاهیدروکسی فعال تبدیل می شود. بیشترین تاثیر این دارو روی کبد است. این اثر ترجیحی را می توان به تفاوت بافتهای مختلف در برداشت دارو از خون نسبت داد. طی درمان با این دارو کاهش تری گلیسریدهای پلاسما و افزایش میزان کلسترول HDL روی می دهد. در بیماری هایی که سطح پلاسمایی LDL افزایش یافته است، مهار کننده های LDL فزایش موثر مى باشند [٧-٣]. مطالعات نشان دادهاند كه استاتين ها داراى اثرات حفاظتی در بعضی از بافتها میباشند. به طوری که مشخص شده است سیمواستاتین، سمیت کبدی و کلیوی ناشی از سیس پلاتین را در موشهای صحرایی کاهش میدهد [۸]. همچنین در پی نارسایی مزمن کلیوی تجربی در موش سوری، سیمواستاتین آسیبهای کلیوی ناشی از این آسیب را کاهش داد [۹]. در بیماران مبتلا به بیماری های مزمن کلیه، با تجویز سیمواستاتین از شدت آسیب عضلهی قلبی در پی نارسایی کلیه کاسته شد [۱۰]. در مطالعهی دیگری، در نمونه سندروم نفروتیک تجربی در موشهای صحرایی نشان دادند که سیمواستاتین می تواند آسیبهای ناشی از تنش اکسیداتیو را کاهش داده و همچنین باعث بهبود پروتئینوری و كاهش آسيب گلومرولها گردد [١١]. نـشان داده شـده اسـت كـه مهار كنندههای HMG-CoA ردوكتاز می توانند در پی پیوند قلب

و کلیه از هیپرکلسترولمی بعد از پیوند عضو، جلوگیری کرده و باعث کاهش وقوع رد پیوند کلیه شوند [۱۲]. با توجه به اینکه هیچ گونه تحقیقی در داخل و خارج از کشور مبنی بر اثر سیمواستاتین بر اسیب و عملکرد کلیه ناشی از انسداد حالب تجربی وجود ندارد، هدف از این مطالعه تعیین اثر سیمواستاتین بر عملکرد کلیه، در پی انسداد کامل یک طرفه حالب در موش صحرایی میباشد.

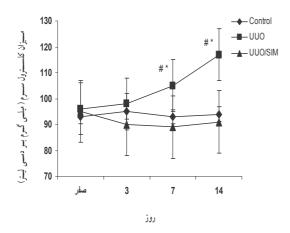
مواد و روشها

حیوانات: این مطالعه تجربی بر روی ۵۰ سر موش صحرایی نژاد Sprague-Dawley) SD با وزن ۱۰±۳۰۰ گرم انجام گرفت. موشها از مرکز پرورش و نگهداری حیوانات آزمایشگاهی دانشگاه تبریز تهیه شده و در شرایط یکسان در قفسهای مخصوص با دوازده ساعت روشنایی و دوازده ساعت تاریکی در درجه حرارت ۲±۲۳ درجه سانتی گراد نگهداری شدند. تغذیه حیوانات توسط پلیتهای مخصوص حیوانات آزمایشگاهی صورت گرفت. غذا و آب به صورت آزادانه در دسترس بود.

در این مطالعه از داروهای سیمواستاتین، کتامین هیدروکلراید، زایلازین و اتر استفاده گردید. برای حل کردن سیمواستاتین از نسبت یک به دو اتانول و سرم فیزیولوژی استفاده شد. سیمواستاتین از شرکت سیگما و اتانول و اتر از شرکت مرک و کتامین هیدروکلراید و زایلازین از شرکت آلفاسان هلند تهیه گردیدند.

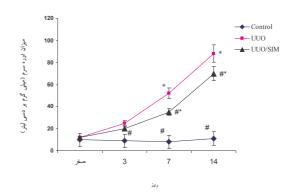
روش آزمایش: در این مطالعه تجربی حیوانات به صورت تصادفی به پنج گروه ده تایی در قفسهای جداگانه تقسیم شدند. در گروه نخست یا کنترل (control) حیوانات بـه صـورت خوراکی روزانه به مدت پانزده روز (شروع یک روز قبل از جراحی) حلال دارو را با حجم ۱۰ ml/kg از طریق گاواژ دریافت کردند. در گروه دوم یا گروه انسداد یک طرف حالب (UUO) حیوانات بعد از انسداد یک طرفه حالب حلال دارو را به مدت پانزدهروز (شروع یک روز قبل از جراحی) روزانه با حجم ۱۰ml/kg دریافت کردند. در گروه سوم یا گروه انسداد همراه با تجويز سيمواستاتين (UUO/SIM) حيوانات بعد از انسداد يك طرفه حالب سیمواستاتین را با دوز mg/kg ۲ دو بار در روز به مدت پانزده روز (شروع یک روز قبل از جراحی) [۷] به صورت خوراکی دریافت کردند. در گروه چهارم یا گروه جراحی شده بدون انسداد حالب (Sham) و ينجم (Sham/SIM) حيوانات همانند گروههای دوم و سوم جراحی شدند ولی مجرای حالب مسدود نشد. برای حذف اثر حجم تجویز دارو، سیمواستاتین در حجم ۱۰ ml/kg تنظیم و به صورت خوراکی تجویز شد.

روش جراحی: برای ایجاد بیهوشی از ترکیب کتامین هیدروکلراید (۴۰ mg/kg) و زایلازین هیدروکلراید (۲ mg/kg) به صورت داخل صفاقی استفاده گردید. سپس برشی به طول سه سانتی متر بر روی پوست ناحیه خط وسط شکم و سپس بر روی خط سفید شکمی ایجاد شد. بعد از مشاهده و آزاد کردن کلیه چپ از اتصالات زیرین، سرخرگ و سیاهرگ کلیوی، حالب با استفاده از نخ بخیه سیلک دو صفر (0-2) ساخت کارخانه سوپا دو لیگاتور در قسمت یک سوم نخست حالب زده شد و حالب به طور کامل بسته شد. بعد از برگرداندن کلیه چپ و احشا به موقعیت طبیعی خود خط سفید شکمی با استفاده از نخ بخیه مصنوعی و قابل خود خط سفید شکمی با استفاده از نخ بخیه مصنوعی و قابل معاده سرتاسری بسته شد. پوست ناحیه با استفاده از نخ بخیه دو صفر سیلک به صورت تکی ساده بخیه شد. در گروه Sham شکم حیوان باز شده و جراحی صورت گرفت ولی حالب فقط دست-حیوان باز شده و بسته نشد [۷، ۱۳ میه].


روش نمونه برداری و شیوههای تشخیصی: برای تهیه نمونه سرمی در روزهای صفر، سوم، هفتم و چهاردهم بعد از جراحی از طریق ورید دمی نمونه خون اخذ گردید. نمونه خون در ۴۰۰۰ دور به مدت پانزده دقیقه سانتریفیوژ گردید. سرمها با استفاده از کیتهای استاندارد شرکت زیست شیمی از نظر عیار سرمی کلسترول، اوره و کراتینین سرم مورد بررسی قرار گرفتند. در روز چهارده بعد از جراحی حیوانات با داروی دی اتیل اتر بیهوش شده و کلیه چپ بعد از جداسازی خارج و در محلول فرمالین نمکی ده درصد ثابت گردید. بعد از تثبیت نمونهها و انجام مراحل مختلف پاساژ بافتی، برای تشخیص تغییرات بافتی از رنگرامیزی هماتوکسیلین اوزین (شرکت مرک آلمان) استفاده شد.

بررسی آماری: بعد از انجام آزمایش، نخست داده ها از نظر نرمالیتی توسط آزمون اسمیرنف کولموگراف بررسی شد. سپس به صورت میانگین اختراف معیار بیان شده و برای مقایسه مقادیر کلسترول، اوره و کراتینین در روزهای مختلف از آزمون آماری آنالیز واریانس با اندازه گیری پی در پی و برای مقایسه مقادیر عوامل فوق در روزهای یکسان در گروه های مختلف از آزمون آنالیز واریانس یک طرفه و در پی آنها از آزمون تعقیبی توکی و برای مقایسه دو به دوی عوامل از آزمون تعیبی سطح معنیدار بودن بین گروه ها در نظر گرفته شد.

نتايج


از نظر نتایج عوامل بیوشیمیایی، میزان سرمی کلسترول در گروه UUO در یی بستن حالب در روزهای ۷ و ۱۴ بعد از عمل

به طور معنی داری (p<٠/٠٥) در مقایسه با روز صفر افزایش یافت. در گروه دریافت کننده سیمواستاتین، میزان سرمی کلسترول در روزهای ۷ و ۱۴ در مقایسه با گروه UUO کاهش معنی دار (p<1/٠۵) نشان داد. این کاهش تا حد گروه کنترل می باشد (نمودار و جدول ۱). به دلیل غیرمعنی دار بودن تفاوت بین گروه کنترل و Sham از ارایه داده های مربوط به گروه Sham در نمودارها خودداری شده است. همان طور که نمودار و جدول شماره ۲ نشان می دهد، میزان سرمی اوره در گروه UUO در یسی بستن حالب در روزهای ۷ و ۱۴ بعد از عمل به طور معنی دار (p< 1/40) در مقایسه با روز صفر افزایش یافت. در گروه دریافت (p< 1/40کننده سیمواستاتین، میزان سرمی اوره در روزهای ۷ و ۱۴ افزایش می یابد ولی نسبت به گروه UUO کمتر بوده و اختلاف معنی دار است و تا حد گروه کنترل هم نمی رسد (نمودار $p<\cdot \cdot \cdot \cdot \circ$ شمارهی ۲). همان طور که نمودار و جدول شماره ۳ نشان می دهد، میزان سرمی کراتینین در گروه UUO در پسی بستن حالب در روزهای ۷ و ۱۴ بعد از عمل به طور معنی دار (p<٠/٠۵) در مقایسه با روز صفر افزایش یافت. در گروه دریافت کننده سیمواستاتین، میزان سرمی کراتینین در روزهای ۷ و ۱۴ افرایش می یابد ولی نسبت به گروه UUO کمتر بوده و فقط در روز ۱۴ با گروه UUO اختلاف معنی دار (p<٠/٠٥) دارد و تبا حد گروه کنترل هم نمی رسد (نمودار شمارهی ۳).

نمودار ۱- تغییرات میزان سرمی کلسترول در روزهای مختلف بعد از انجام عمل UUO را در گروه های کنترل، UUO و دریافتکننده سیمواستاتین (UUO/SIM) نشان می دهد.

*: p<-/-0 در مقایسه با روز صفر در همان گروه و # p<-/-0 در مقایسه با روز مشابه در گروههای مختلف می باشد.

نمودار ۲- تغییرات میزان سرمی اوره در روزهای مختلف بعد از انجام عمل UUO را در گروه های کنترل، UUO و دریافت کننده سیمواستاتین (UUO/SIM) نشان می دهد.

*: p<-۰/۰۵ در مقایسه با روز صفر در همان گروه و # p<-۰/۰۵ در مقایسه با روز مشابه در گروههای مختلف می باشد.

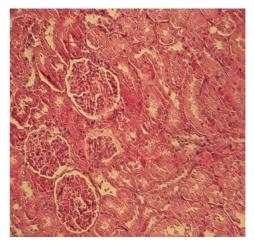
نمودار ۳- تغییرات میزان سرمی کراتینین در روزهای مختلف بعد از انجام عمل UUO را در گروه های کنترل، UUO و دریافتکننده سیمواستاتین (UUO/SIM) نشان می دهد.

*: p<-۰/۰۵ در مقایسه با روز صفر در همان گروه و # p<-۰/۰۵ در مقایسه با روز مشابه در گروههای مختلف می باشد.

جدول ۱- میزان کلسترول سرم در روزهای مختلف بعد از انجام عمل UUO در گروه های مختلف

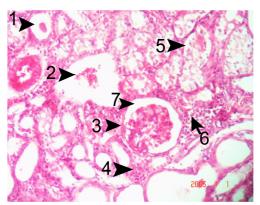
گروه						روز
مقدار p	UUO/SIM	UUO	Sham/SIM	Sham	كنترل	. 333
•/ ٩• V	94/V& ± 4/47	90/VV±4/49	94/94±7/94	90/77±7/V0	94/74 7 1/18	صفر
·/V10	9./09±4/17	91/14 1 0/0	94/40±1/V4	98/79±7/44	90/4V T 1/19	٣
•/• **	9 · / ۵1 ± ٣ / ٨	1 • V/07±4/TA	94/08±4/40	94/14 1 4/0	94/48 1 1/01	٧
•/•11	97/04±4/+0	\\\/\\ ± \/\\	90/VY±1/YF	94/141/40	90/89±4/44	14

جدول ۲- میزان اوره سرم در روزهای مختلف بعد از انجام عمل UUO در گروه های مختلف

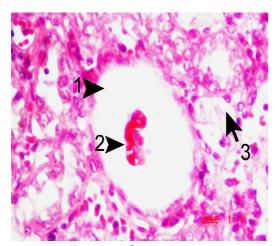

گروه						•••
مقدار p	UUO/SIM	UUO	Sham/SIM	Sham	كنترل	روز
٠/٨٩٠	17/49±7/47	11/AV±Y/•۵	11/74±1/40	1 • / ۶ A±Y / ۴	9/00±1/VY	صفر
•/•٣١	Y1/44±7/44	40/01±4/V9	\ • / 9 ± Y / V Y	11/VV±1/90	1·/1#±1/40	٣
•/••٢	***/\\# ± \\\	۵٣/۸۴ ± ٣/۴۸	1 · / ۶4±4/۵۷	11/09±Y/YF	9/17±1/AA	٧
•/•••	V0/89 17 /19	1//64 <u>+</u> 0/14	9/ <i>A</i> 9±1/9	1 · / TO±7/T9	1·/04±7/·1	14

جدول ۳- میزان کراتینین سرم در روزهای مختلف بعد از انجام عمل UUO در گروه های مختلف

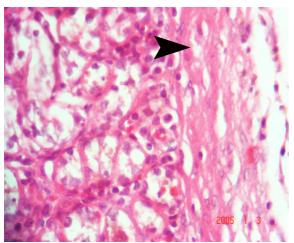
گروه						روز
مقدار p	UUO/SIM	UUO	Sham/SIM	Sham	كنترل	
•/٨۶٢	•/8A±•/•٣	•/ <i>۶۶</i> ±•/• ۴	۰/٧±٠/٠۵	•/ ۶۹±• /•٣	۰/۷۱±۰/۰۵	صفر
٠/۵۸۵	•/ \ Y ± •/•۴	۰/۹V±۰/۰۵	*/ \$ \±*/*V	*/ V ±*/* \	·/ \ \±•/•۴	٣
•/•۴1	1/10±•/•9	\/ * Y±•/•V	*/ Y **/*۶	·/V\±•/•Y	۰/۷۵±۰/۰۳	٧
•/•٣٨	1/9 *± •/•9	Y/YV±•/•A	۰/۷۷±۰/۰۳	•/ ٧٣±• /•۵	·/۸1±•/•٣	14


از نظر نتایج تغییرات بافتی، در گروه کنترل و Sham هیچ گونه تغییری در بافت کلیه مشاهده نشد و بافت کلیه از نظر کپسول بومن، گلومرولها، سلولهای توبولی، بافت بینابینی و

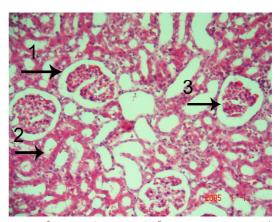
عروق خونی طبیعی بود (شکل شمارهی ۱). به دلیل مشابه بـودن تصاویر بافتی گروه کنترل و Sham از ارایه تـصاویر مربـوط بـه گروه Sham خودداری شده است.



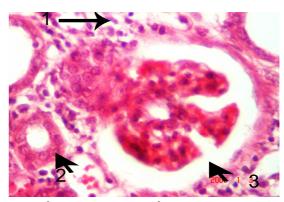
شکل ۱- به طبیعی بودن کپسول بومن، گلومرولها، سلولهای توبولی، بافت بینابینی و عروق خونی در گروه کنترل توجه شود (رنگ آمیزی هماتوکسیلین _ ائوزین، بزرگنمایی ۲۰٪).


در گروه UUO در پی انسداد حالب اتساع فیضای کپسول بومن، آتروفی شدید گلومرولی و توبولی، اسکلروز پیرامون کپسول بومن و اتساع فضای آن، تجمع سلولهای تکهستهای در بافت بینابینی کلیه، دژنراسیون منتشر و شدید سلولهای توبولی، افزایش ضخامت لایه اپی تلیالی کپسول بومن، خیز پیرامون عروقی، فیبروز بافت بینابینی کلیه، خونریزی، تغییرات استحاله در توبولهای نزدیک، تورم آبکی سلولهای توبولها، فیبروز زیر کپسولی به همراه تورم آبکی و نکروز سلولهای توبولی مشاهده گردید (شکل شمارهی ۲ تا ۴).

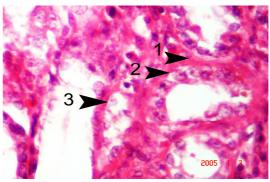
شکل ۲- نمای ریزبینی از اتساع فضای کپسول بومن و آتروفی شدید گلومرولی (پیکان ۲و۷)، اسکلروز پیرامون کپسول بومن (پیکان ۳)، تجمع سلولهای تکهستهای در بافت بینابینی کلیه (پیکان ۴ و ۶)، در نرزاسیون منتشر و شدید سلولهای توبولی در گروه UUO. به افزایش ضخامت لایه اپی تلیالی کپسول بومن و خیز پیرامون عروقی (پیکان ۱ و ۵) توجه شود (رنگ آمیزی هماتوکسیلین ائوزین، برگنمایی ۲۰).



شکل ۳- نمای ریزبینی از اتساع و آتروفی شدید گلومرولار کلیوی (پیکان ۱ و ۲) به همراه تغییرات استحاله در توبولهای نزدیک (پیکان ۳) در گروه UUO توجه شود (رنگ آمیزی هماتوکسیلین - ائوزین، بزرگنمایی ۴۰٪).



شکل ۴- نمای ریزبینی از فیبروز زیر کپسولی (پیکان) به همراه تورم آبکی و نکروز سلولهای توبولی در گروه UUO توجه شود (رنگ آمیزی هماتوکسیلین-ائوزین، بزرگنمایی ۴۰٪).


تجویز سیمواستاتین در زمان انسداد حالب در گروه UUO/SIM توانست آسیبهای ناشی از انسداد حالب را در بافت کلیه کاهش دهد. به طوری که تنها در بعضی از مناطق تغییرات استحاله بسیار ملایم و آتروفیک کلافه گلومرولی، خیز و هجوم ملایم سلولهای تکهستهای، اتساع ملایم فضای کپسول بومن بدون اسکلروز غشای کپسول و نفوذ ملایم بافت فیبروز در پرامون توبولهای کلیوی مشاهده شد و توبولهای نزدیک و دور بیشتر از حالت طبیعی هیستولوژیکی برخوردار بودند (شکل ۵ تا

شکل ۵- به نمای ریزبینی از گلومرول و توبولهای کلیه گروه درمان شده با داروی سیمواستاتین توجه شود. در این نگاره تنها در بعضی از مناطق بافتی تغییرات استحاله بسیار ملایم و آتروفیک کلافه گلومرولی (پیکان ۱، ۲ و ۳) قابل مشاهده می باشد (رنگ آمیزی هماتوکسیلین- ائوزین، بزرگنمایی ۲۰).

شکل ۶- به نمای ریزبینی از گلومرول و توبولهای کلیه گروه درمان شده با داروی سیمواستاتین توجه شود. در این نگاره اتساع ملایم فضای کپسول بومن به همراه ساختار طبیعی یک توبول نزدیک (پیکان۲) خیز و هجوم ملایم سلولهای تک هستهای (پیکان۲،۲و۳) قابل مشاهده می باشد (رنگ آمیزی هماتوکسیلین – ائوزین، بزرگنمایی ۴۰٪).

شکل ۷- نمای ریزبینی از تغییرات ملایم دژنراتیو سلولهای توبولی کلیه (پیکان ۲ و ۳) گروه درمان شده با داروی سیمواستاتین. به نفوذ ملایم بافت فیبروز در پیرامون توبولهای کلیوی (پیکان ۱) توجه شود (رنگامیزی هماتوکسیلین- ائوزین، بزرگنمایی ۴۰٪).

ىحث

نتایج این مطالعه نشان داد که در پی انسداد یک طرفه حالب در موش صحرایی میزان کلسترول، اوره و کراتینین سرم افزایش می یابد. علایم بالینی و پاسخهای فیزیوپاتولوژیک انسداد جریان ادرار تحت تاثیر عوامل مختلفی هستند. از این عوامل مى توان محل انسداد، شدت و دوره انسداد، حضور يا فقدان عفونت دستگاه ادراری و دوطرفه یا یک طرفه بودن انسداد قسمت فوقانی دستگاه ادراری را نام برد. آنوری، ازوتمی و اورمی همراه با انسداد کامل میزنای مشاهده شدهاند. بعد از ۴۸ ساعت در پی انسداد میزنای، معمولا چند علامت غیرطبیعی در بیوشیمی خون مشاهده می شود ولی ۴۸ تا ۷۲ ساعت بعد، معمولا علایم بالینی و تغییرات شیمیایی به سرعت پیشرفت مینمایند. در اثر انسداد کامل میزنای تغییرات ریختشناسی و عملکردی با هم به وجود می آیند. انسداد یک طرفه و تدریجی حالب با احتباس ادرار و تخریب پارانشیم کلیه همراه است و منجر به بزرگی کلیه می شود. همچنین نشان دادهاند که در پی انسداد حالب میزان سرمی کلسترول به دلیل تولید لیپوپروتئینهای با مقادیر کلسترول و تری گلیسیرید بالا در كبد، افزايش مي يابد [١، ٢، ١٥، ١٤]. اين نتايج با يافتههاي تحقیق حاضر مبنی بر افزایش میزان کلسترول، اوره و کراتینین سرم همخوانی دارد. از طرف دیگر انسداد باعث بروز تغییرات شدید بافتی در کلیه شد. در این تحقیق در پی انسداد حالب، اتساع فضای کپسول بومن، آتروفی شدید گلومرولی و توبولی، اسکلروز پیرامون کپسول بومن و اتساع فضای آن، تجمع سلولهای تک هستهای در بافت بینابینی کلیه، دژنراسیون منتشر و شدید سلول های توبولی، افزایش ضخامت لایه اپی تلیالی کپسول بومن، خيز پيرامون عروقي، فيبروز بافت بينابيني كليه، خونريزي، تغییرات استحاله در توبولهای نزدیک، تـورم آبکـی سـلولهـای توبولها، فیبروز زیرکپسولی به همراه تورم آبکی و نکروز سلولهای توبولی مشاهده گردید. مطالعات گذشته نشان داده است که انسداد یک طرفه حالب در موش صحرایی می تواند منجر به فيبروز توبولي بينابيني، گلومرولواسكلروزيس، نفوذ سلولهاي التهابي و التهاب بافت بينابيني گردد. Klahr و همكاران (۱۹۹۱ و ۱۹۹۴) نشان دادند که در پی انسداد حالب فیبروز توبولی بینابینی، اتساع فضای کپسول بومن، آتروفی شدید گلومرولی و توبولی و تجمع سلولهای تکه ـستهای روی مـیدهـد [۱، ۲]. Kaneto و همکاران (۱۹۹۴) و Gonzalez و همکاران (۱۹۸۸) نـشان دادنـد که بعد از انسداد حالب، فیبروز و التهاب بافت بینابینی کلیــه روی می دهـد [۱۳، ۱۳]. Moriyama و همکاران (۲۰۰۰) و -Lange Sperandio و همكاران (۲۰۰۵) نشان دادند كه انسداد حالب مشخص شده است که استاتین ها با مهار تجمع ماکروفاژها در بافت توبولی بینابینی کلیه باعث کاهش فیبروز کلیوی میشوند و این عمل مستقل از نقش استاتینها در پایین آوردن چربی خون می باشد. در مطالعات دیگر نشان داده اند که استاتین ها با کاهش تعداد ماکروفاژها در روز سوم و دهم بعد از انسداد یک طرفه حالب و همچنین با کاهش تولید استئوپونتین (OPN) و عامل محرك كلوني ماكروفار (M-CSF) باعث كاهش التهاب مي شوند. با توجه به نقش OPN و M-CSF در التهاب و تجمع سلولهای التهابي به ويژه ماكروفاژها، مهار توليد اين سيتوكين ها توسط سيمواستاتين ممكن است مهمترين عامل كنترل التهاب و فيبروز كليه باشد [٧]. مطالعات همچنين نشان دادهاند كه استاتينها باعث كاهش توليد مولكولهاى چسبناك سلولهاى آندوتليال مى شوند [۲۰] که خود این مولکولها در تجمع ماکروفاژها دخیل هستند. به نظر می رسد که در نفروپاتی های ناشی از انسداد یک طرفه حالب، استاتین ها با کاهش تولید OPN و مهار غیرمستقیم روی آنژیوتانسین II (توسط OPN) نقش خود را اعمال می کننــد [۱۶]. مشخص شده است که OPN محرک قوی تولید آنژیوتانسین II مى باشد [٢١]. ادعا شده است كه سيمواستاتين باعث مهار فعال شدن سلولهای توبولی و مهار تمایز سلولی در کلیه شده و از فيبروز جلوگيري مي كند. تغيير شكل فيبروبلاستها به میوفیبروبلاست ها در پی انسداد یک طرف حالب در اثر آنژیو تانسین II اتفاق می افتد [۷]. با توجه به نقش غیر مستقیم استاتینها در مهار آنژیوتانسین II [۱۶] اثر کاهش فیبروز به دور از انتظار نیست. از طرفی دیگر، استاتینها باعث مهار فعالیت عامل هستهای کاپا ـ ب (KB) می شوند [۱۵]. مشخص شده است که مهار عامل هستهای KB می تواند باعث کاهش تولید عامل محرک كلونى ماكروفاژ (M-CSF) گردد [۲۲].

نتيجه گيري

نتایج این مطالعه نشان داد که انسداد حالب، باعث کاهش عملکرد کلیه و آسیب شدید بافت کلیه می شود. تجویز هم زمان سیمواستاتین باعث بهبود عملکرد و کاهش آسیبهای بافتی ناشی از انسداد حالب شد. البته نقش حفاظتی سیمواستاتین در بیماری-های کلیوی انسان همانند انسداد حالب نیاز به پژوهشهای بیشتری دارد.

باعث نفوذ سلولهای التهابی و فیبروز بافت بینابینی کلیه می شود [۱۸، ۱۴]. این نتایج با یافته های پاتولوژیک این مطالعه همخوانی دارد. نتایج این مطالعه نشان داد که سیمواستاتین باعث بهبود عملکرد کلیه، در پی انسداد حالب شد. سیمواستاتین در این مطالعه باعث کاهش میزان سرمی کلسترول، اوره و کراتینین و کاهش آسیبهای بافتی ناشی از انسداد حالب شد. مطالعات مختلف نشان دادهاند که سیمواستاتین، دارای اثرات حفاظتی در بعضی از بافتها می باشد. به طوری که Namazi نشان داد که سیمواستاتین سمیت کبدی و کلیوی ناشی از سیس پلاتین را در موشهای صحرایی کاهش می دهد [۸]. همچنین Ivanovski و همکاران (۲۰۰۸) نشان دادند که در پی نارسایی مزمن کلیوی تجربی در موش سوری، سیمواستاتین اسیبهای کلیوی ناشی از این آسیب را کاهش می دهد [۹]. Panichi و همکاران (۲۰۰۸) در بیماران مبتلا به بیماریهای مزمن کلیه، با تجویز سیمواستاتین از شدت آسیب عضلهی قلبی در پی نارسایی کلیه کاستند [۱۰]. در مطالعه دیگری، Sonmez و همکاران (۲۰۰۸) در نمونه سـندروم نفروتیک تجربی در موشهای صحرایی نشان دادند که سیمواستاتین می تواند آسیبهای ناشی از تنش اکسیداتیو را کاهش داده و همچنین باعث بهبود پروتئینوری و کاهش آسیب گلومرول-ها گردد [۱۱]. Wanner و همکاران (۱۹۹۷) نشان دادهاند که مهار کنندههای هیدرو کسی متیل گلوتاریل کو آردوکتاز می توانند در پی پیوند قلب و کلیه از هیپرکلسترولمی بعد از پیوند عضو جلوگیری کرده و باعث کاهش وقوع رد پیوند کلیه شوند [۱۲]. این نتایج حفاظتی با یافته های این مطالعه همخوانی دارد. ساز و کارهای مختلفی را برای اثر حفاظتی استاتینها در بافتهای مختلف مطرح كردهاند. انسداد يك طرفه حالب مي تواند به سرعت و با شدت زیادی باعث ارتشاح سلولهای التهابی به بافت بینابینی کلیه گردد. به نظر میرسد که تنش اکسیداتیو نقش کلیدی در آغاز و ادامه التهاب بعد از انسداد دارد که نتیجه آن آسیب توبول های کلیوی و فیبروز بافت بینابینی میباشد [۱۸، ۱۹]. از طرف دیگر مطالعات نشان دادهاند که سیمواستاتین دارای اثرات آنتی اکسیدانی در بافت کلیه در پی آسیب ناشی از مواد شیمیایی و جراحی می-باشد [۶-۳]. با توجه به نقش آنتی اکسیدانی سیمواستاتین چنین مى توان پيشنهاد كرد كه احتمالا اين دارو با ساز و كار مشابه، باعث کاهش آسیب کلیوی در پی انسداد حالب می شود. همچنین

References:

[1] Klahr S. New insights into the consequences and mechanisms of renal impairment in obstructive nephropathy. *Am J Kidney Dis* 1991;18:689-99.

- [2] Klahr S, Pukerson ML. The pathophysiology of obstructive nephropathy, The role of vasoactive compounds in the hemodynamicand structural abnormalities of the obstructed kidney. *Am J Kidney Dis* 1994;23:219-23.
- [3] Bayorh MA, Ganafa AA, Eatman D, Walton M, Feuerstein GZ. Simvastatin and losartan enhance nitric oxide and reduce oxidative stress in salt-induced hypertension. *Am J Hypertens* 2005;18(11):1496-502.
- [4] Inman SR, Davis NA, Mazzone ME, Olson KM, Lukaszek VA, Yoder KN. Simvastatin and L-arginine preserve renal function after ischemia/reperfusion injury. *Am J Med Sci* 2005;329(1):13-17.
- [5] Işeri S, Ercan F, Gedik N, Yüksel M, Alican I. Simvastatin attenuates cisplatin-induced kidney and liver damage in rats. *Toxicology* 2007;230(2-3):256-64.
- [6] Rugale C, Delbosc S, Mimran A, Jover B. Simvastatin reverses target organ damage and oxidative stress in Angiotensin II hypertension: comparison with apocynin, tempol, and hydralazine. *J Cardiovasc Pharmacol* 2007;50(3):293-298.
- [7] Vieira JM, Mantovani E, Rodrigues LT, Dellê H, Noronha IL, Fujihara CK, et al. Simvastatin attenuates renal inflammation, tubular transdifferentiation and interstitial fibrosis in rats with unilateral ureteral obstruction. *Nephrol Dial Transplant* 2005;20(8):1582-91.
- [8] Namazi H. Letter by Namazi regarding article "Simvastatin attenuates cisplatin-induced kidney and liver damage in rats". *Toxicology* 2008;247(2-3): 161.
- [9] Ivanovski O, Szumilak D, Nguyen-Khoa T, Nikolov IG, Joki N, Mothu N, et al. Effect of simvastatin in apolipoprotein E deficient mice with surgically induced chronic renal failure. *J Urol* 2008;179(4):1631-6.
- [10] Panichi V, Mantuano E, Paoletti S, Santi S, Manca Rizza G, Cutrupi S, et al. Effect of simvastatin on plasma asymmetric dimethylarginine concentration in patients with chronic kidney disease. *J Nephrol* 2008;21(1):38-44.
- [11] Sonmez A, Yilmaz MI, Korkmaz A, Topal T, Caglar K, Kaya A, et al. Hyperbaric oxygen treatment augments the efficacy of cilazapril and simvastatin regimens in an experimental nephrotic syndrome model. *Clin Exp Nephrol* 2008;12(2):110-8.
- [12] Wanner C, Krämer-Guth A, Galle J. Use of HMG-CoA Reductase Inhibitors after Kidney and Heart Transplantation: Lipid-Lowering and Immunosuppressive Effects. *BioDrugs* 1997;8(5):387-93.
- [13] Kaneto H, Morrissey J, McCracken R, Reyes A, Klahr S. Enalapril reduces collagen type IV synthesis and expansion of the interstitium in the obstructed rat kidney. *Kidney Int* 1994;45:1637-47.
- [14] Lange-Sperandio B, Forbes MS, Thornhill B, Okusa MD, Linden J. Chevalier RL. A (2A) adenosine receptor agonist and PDE (4) inhibition delays inflammation but fails to reduce injury in experimental obstructive nephropathy. *Nephron Exp Nephrol* 2005;100(3):e113-e23.
- [15] Massy ZA, Guijarro C. Statins: effects beyond cholesterol lowering. *Nephrol Dial Transplant* 2001;16(9):1738-1741.
- [16] Park JK, Muller DN, Mervaala EM. Cerivastatin prevents angiotensin II-induced renal injury independent of blood pressure-and cholesterol-lowering effects. *Kidney Int* 2000;58(4):1420-30.
- [17] Gonzalez AG, Vadillo OF, Perez TR. Experimental diffuse interstitialrenal fibrosis. A biochemical approach. *Lab Invest* 1988;59:245-52.
- [18] Moriyama T, Kawada N, Nagatoya K, Horio M, Imai E, Hori M. Oxidative stress in tubulointerstitial injury: therapeutic potential of antioxidants towards interstitial fibrosis. *Nephrol Dial Transplant* 2000;6:47-9.
- [19] Zhou Z, Kang YJ. Cellular and subcellular localization of catalase in the heart of transgenic mice. *J Histochem Cytochem* 2000;48:585-94.
- [20] Serrano CV Jr, Yoshida VM, Venturinelli ML, D'Amico E, Monteiro HP, Ramires JA, et al. Effect of simvastatin on monocyte adhesion molecule expressionin patients with hypercholesterolemia. *Atherosclerosis* 2001;157(2):505-12.
- [21] Xie Y, Sakatsume M, Nishi S, Narita I, Arakawa M, Gejyo F. Expression, roles, receptors, and regulation of osteopontin in the kidney. *Kidney Int* 2001;60(5):1645-57.
- [22] Wardle EN. Nuclear factor kappaB for the nephrologist. *Nephrol Dial Transplant* 2001;16(9):1764-68. 43.