|
1. Khoshnazar M, Parvardeh S, Bigdeli MR. Alpha-pinene exerts neuroprotective effects via anti-inflammatory and anti-apoptotic mechanisms in a rat model of focal cerebral ischemia-reperfusion. J Stroke Cerebrovasc Dis. 2020; 29(8): 104977. doi.10.1016/j.jstrokecerebrovasdis.2020.104977 PMid:32689608 2. Khoshnazar M, Bigdeli MR, Parvardeh S, Pouriran R. Attenuating effect of α-pinene on neurobehavioural deficit, oxidative damage and inflammatory response following focal ischaemic stroke in rat. J Pharm Pharmacol. 2019; 71(11): 1725-1733. doi.10.1111/jphp.13164 PMid:31523814 3. Erfani S, Moghimi A, Aboutaleb N, Khaksari M. Nesfatin-1 Improve Spatial Memory Impairment Following Transient Global Cerebral Ischemia/Reperfusion via Inhibiting Microglial and Caspase-3 Activation. J Mol Neurosci. 2018; 65(3):377-384. doi.10.1007/s12031-018-1105-3 PMid:29956089 4. Erfani S, Moghimi A, Aboutaleb N, Khaksari M. Protective effects of Nesfatin-1 peptide on cerebral ischemia reperfusion injury via inhibition of neuronal cell death and enhancement of antioxidant defenses. Metab Brain Dis. 2019; 34(1):79-85. doi.10.1007/s11011-018-0323-2 PMid:30269302 5. Chen Z, Wang S, Shu T, Xia S, He Y, Yang Y. Progress in Research on Regulated Cell Death in Cerebral Ischaemic Injury After Cardiac Arrest. J Cell Mol Med. 2025; 29(3): e70404. doi.10.1111/jcmm.70404 PMid:39936900 PMCid:PMC11816164 6. Osterli E, Park Y, Hu K, Kasof G, Wiederhold T, Liu C, et al. The role of autophagy in ischemic brain injury. Autophagy Rep. 2025; 4(1): 2486445. doi.10.1080/27694127.2025.2486445 PMid:40395988 PMCid:PMC11980474 7. Stanzione R, Pietrangelo D, Cotugno M, Forte M, Rubattu S. Role of autophagy in ischemic stroke: insights from animal models and preliminary evidence in the human disease. Front Cell Dev Biol. 2024; 12: 1360014. doi.10.3389/fcell.2024.1360014 PMid:38590779 PMCid:PMC10999556 8. Qin C, Yang S, Chu YH, Zhang H, Pang XW, Chen L, et al. Signaling pathways involved in ischemic stroke: molecular mechanisms and therapeutic interventions. Signal Transduct Target Ther. 2022; 7(1): 215. doi.10.1038/s41392-022-01064-1 PMid:35794095 PMCid:PMC9259607 9. Schnaar RL. The Biology of Gangliosides. Adv Carbohydr Chem Biochem. 2019; 76:113-48. doi.10.1016/bs.accb.2018.09.002 PMid:30851743 10. Yuan H, Zhu B, Li C, Zhao Z. Ceramide in cerebrovascular diseases. Front Cell Neurosci. 2023; 17: 1191609. doi.10.3389/fncel.2023.1191609 PMid:37333888 PMCid:PMC10272456 11. Wu Y, Liu Y, Gulbins E, Grassmé H. The Anti-Infectious Role of Sphingosine in Microbial Diseases. Cells. 2021;10(5):1105. doi.10.3390/cells10051105 PMid:34064516 PMCid:PMC8147940 12. Sandhoff R, Schulze H, Sandhoff K. Ganglioside Metabolism in Health and Disease. Prog Mol Biol Transl Sci. 2018;156:1-62. doi.10.1016/bs.pmbts.2018.01.002 PMid:29747811 13. Guo Z. Ganglioside GM1 and the Central Nervous System. Int J Mol Sci. 2023; 24(11): 9558. doi.10.3390/ijms24119558 PMid:37298512 PMCid:PMC10253378 14. Sipione S, Monyror J, Galleguillos D, Steinberg N, Kadam V. Gangliosides in the Brain: Physiology, Pathophysiology and Therapeutic Applications. Front Neurosci. 2020; 14: 572965. doi.10.3389/fnins.2020.572965 PMid:33117120 PMCid:PMC7574889 15. Vasques JF, Gonçalves RG, da Silva-Junior AJ, Martins RS, Gubert F, Mendez-Otero R. Gangliosides in nervous system development, regeneration, and pathologies. Neural Regen Res. 2023; 18(1): 81-86. doi.10.4103/1673-5374.343890 PMid:35799513 PMCid:PMC9241395 16. Benady A, Freidin D, Pick CG, Rubovitch V. GM1 ganglioside prevents axonal regeneration inhibition and cognitive deficits in a mouse model of traumatic brain injury. Sci Rep. 2018; 8(1): 13340. doi.10.1038/s41598-018-31623-y PMid:30190579 PMCid:PMC6127193 17. Furukawa K, Ohmi Y, Tajima O, Ohkawa Y, Kondo Y, Shuting J, et al. Gangliosides in Inflammation and Neurodegeneration. Prog Mol Biol Transl Sci. 2018; 156: 265-287. doi.10.1016/bs.pmbts.2018.01.009 PMid:29747817 18. Schnaar RL. Glycolipid-mediated cell-cell recognition in inflammation and nerve regeneration. Arch Biochem Biophys. 2004;426(2):163-72. doi.10.1016/j.abb.2004.02.019 PMid:15158667 19. Varki A, Schnaar RL, Schauer R. Sialic Acids and Other Nonulosonic Acids. In: Varki A, Cummings RD, Esko JD, et al, editors. Essentials of Glycobiology. 3rd edition. Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press; 2015-2017. Chapter 15. 20. Sonnino S, Chigorno V. Ganglioside molecular species containing C18- and C20-sphingosine in mammalian nervous tissues and neuronal cell cultures. Biochim Biophys Acta. 2000; 1469(2): 63-77 .doi.10.1016/S0005-2736(00)00210-8 PMid:10998569 21. Yu RK, Tsai YT, Ariga T, Yanagisawa M. Structures, biosynthesis, and functions of gangliosides--an overview. J Oleo Sci. 2011; 60(10):537-44. doi.10.5650/jos.60.537 PMid:21937853 PMCid:PMC3684167 22. Karpiak SE, Mahadik SP, Wakade CG. Ganglioside reduction of ischemic injury. Crit Rev Neurobiol. 1990; 5(3):221-37. 23. Gupta G, Surolia A. Glycosphingolipids in microdomain formation and their spatial organization. FEBS Lett. 2010; 584(9):1634-41. doi.10.1016/j.febslet.2009.11.070 PMid:19941856 24. Iwabuchi K, Nakayama H, Iwahara C, Takamori K. Significance of glycosphingolipid fatty acid chain length on membrane microdomain-mediated signal transduction. FEBS Lett. 2010; 584(9): 1642-52. doi.10.1016/j.febslet.2009.10.043 PMid:19852959 25. Sandhoff R. Very long chain sphingolipids: tissue expression, function and synthesis. FEBS Lett. 2010; 584(9):1907-13. doi.10.1016/j.febslet.2009.12.032 PMid:20035755 26. Schnaar RL. Brain gangliosides in axon-myelin stability and axon regeneration. FEBS Lett. 2010; 584(9): 1741-7. doi.10.1016/j.febslet.2009.10.011 PMid:19822144 PMCid:PMC2856809 27. Yu RK, Suzuki Y, Yanagisawa M. Membrane glycolipids in stem cells. FEBS Lett. 2010; 584(9):1694-9. doi.10.1016/j.febslet.2009.08.026 PMid:19716368 PMCid:PMC4480870 28. Haughey NJ, Bandaru VV, Bae M, Mattson MP. Roles for dysfunctional sphingolipid metabolism in Alzheimer's disease neuropathogenesis. Biochim Biophys Acta. 2010; 1801(8): 878-86. doi.10.1016/j.bbalip.2010.05.003 PMid:20452460 PMCid:PMC2907186 29. Ohmi Y, Tajima O, Ohkawa Y, Mori A, Sugiura Y, Furukawa K, et al. Gangliosides play pivotal roles in the regulation of complement systems and in the maintenance of integrity in nerve tissues. Proc Natl Acad Sci U S A. 2009; 106(52): 22405-10. doi.10.1073/pnas.0912336106 PMid:20018737 PMCid:PMC2792163 30. Posse de Chaves E, Sipione S. Sphingolipids and gangliosides of the nervous system in membrane function and dysfunction. FEBS Lett. 2010; 584(9):1748-59. doi.10.1016/j.febslet.2009.12.010 PMid:20006608 31. Chan K, Lanthier P, Liu X, Sandhu JK, Stanimirovic D, Li J. MALDI mass spectrometry imaging of gangliosides in mouse brain using ionic liquid matrix. Anal Chim Acta. 2009; 639(1-2):57-61. doi.10.1016/j.aca.2009.02.051 PMid:19345758 32. Sugiura Y, Shimma S, Konishi Y, Yamada MK, Setou M. Imaging mass spectrometry technology and application on ganglioside study; visualization of age-dependent accumulation of C20-ganglioside molecular species in the mouse hippocampus. PLoS One. 2008; 3(9):e3232. doi.10.1371/journal.pone.0003232 PMid:18800170 PMCid:PMC2532745 33. Kawashima N, Tsuji D, Okuda T, Itoh K, Nakayama K. Mechanism of abnormal growth in astrocytes derived from a mouse model of GM2 gangliosidosis. J Neurochem. 2009; 111(4): 1031-41. doi.10.1111/j.1471-4159.2009.06391.x PMid:19765188 34. Conzelmann E, Sandhoff K. AB variant of infantile GM2 gangliosidosis: deficiency of a factor necessary for stimulation of hexosaminidase A-catalyzed degradation of ganglioside GM2 and glycolipid GA2. Proc Natl Acad Sci U S A. 1978; 75(8): 3979-83. doi.10.1073/pnas.75.8.3979 PMid:99746 PMCid:PMC392913 35. Sipione S, Monyror J, Galleguillos D, Steinberg N, Kadam V. Gangliosides in the Brain: Physiology, Pathophysiology and Therapeutic Applications. Front Neurosci. 2020; 14:572965. doi.10.3389/fnins.2020.572965 PMid:33117120 PMCid:PMC7574889 36. Ledeen R, Wu G. Gangliosides of the Nervous System. Methods Mol Biol. 2018;1804:19-55. doi.10.1007/978-1-4939-8552-4_2 PMid:29926403 37. Ngamukote S, Yanagisawa M, Ariga T, Ando S, Yu RK. Developmental changes of glycosphingolipids and expression of glycogenes in mouse brains. J Neurochem. 2007; 103(6):2327-41. doi.10.1111/j.1471-4159.2007.04910.x PMid:17883393 38. Sarbu M, Ica R, Zamfir AD. Gangliosides as Biomarkers of Human Brain Diseases: Trends in Discovery and Characterization by High-Performance Mass Spectrometry. Int J Mol Sci. 2022; 23(2): 693. doi.10.3390/ijms23020693 PMid:35054879 PMCid:PMC8775466 39. Sandhoff R, Sandhoff K. Emerging concepts of ganglioside metabolism. FEBS Lett. 2018; 592(23): 3835-3864. doi.10.1002/1873-3468.13114 PMid:29802621 40. van Echten-Deckert G, Herget T. Sphingolipid metabolism in neural cells. Biochim Biophys Acta. 2006; 1758(12):1978-94. doi.10.1016/j.bbamem.2006.06.009 PMid:16843432 41. Tettamanti G, Bassi R, Viani P, Riboni L. Salvage pathways in glycosphingolipid metabolism. Biochimie. 2003; 85(3-4): 423-37. doi.10.1016/S0300-9084(03)00047-6 PMid:12770781 42. Tettamanti G. Ganglioside/glycosphingolipid turnover: new concepts. Glycoconj J. 2004; 20(5): 301-17. doi.10.1023/B:GLYC.0000033627.02765.cc PMid:15229395 43. Guo Z. Ganglioside GM1 and the Central Nervous System. Int J Mol Sci. 2023; 24(11): 9558. doi.10.3390/ijms24119558 PMid:37298512 PMCid:PMC10253378 44. Wang J, Zhang Q, Lu Y, Dong Y, Dhandapani KM, Brann DW, et al. Ganglioside GD3 is up-regulated in microglia and regulates phagocytosis following global cerebral ischemia. J Neurochem. 2021; 158(3):737-52. doi.10.1111/jnc.15455 PMid:34133773 PMCid:PMC8363563 45. Li L, Tian J, Long MK, Chen Y, Lu J, Zhou C, et al. Protection against Experimental Stroke by Ganglioside GM1 Is Associated with the Inhibition of Autophagy. PLoS One. 2016;11(1):e0144219. doi.10.1371/journal.pone.0144219 PMid:26751695 PMCid:PMC4709082 46. Lim H, Lee J, You B, Oh JH, Mok HJ, Kim YS, et al. GT1b functions as a novel endogenous agonist of toll-like receptor 2 inducing neuropathic pain. EMBO J. 2020; 39(6):e102214. doi.10.15252/embj.2019102214 PMid:32030804 PMCid:PMC7073460 47. Caughlin S, Hepburn JD, Park DH, Jurcic K, Yeung KK, Cechetto DF, et al. Increased Expression of Simple Ganglioside Species GM2 and GM3 Detected by MALDI Imaging Mass Spectrometry in a Combined Rat Model of Aβ Toxicity and Stroke. PLoS One. 2015; 10(6): e0130364. doi.10.1371/journal.pone.0130364 PMid:26086081 PMCid:PMC4473074 48. Sipione S, Monyror J, Galleguillos D, Steinberg N, Kadam V. Gangliosides in the Brain: Physiology, Pathophysiology and Therapeutic Applications. Front Neurosci. 2020; 14:572965. doi.10.3389/fnins.2020.572965 PMid:33117120 PMCid:PMC7574889 49. Whitehead SN, Chan KH, Gangaraju S, Slinn J, Li J, Hou ST. Imaging mass spectrometry detection of gangliosides species in the mouse brain following transient focal cerebral ischemia and long-term recovery. PLoS One. 2011; 6(6): e20808. doi.10.1371/journal.pone.0020808 PMid:21687673 PMCid:PMC3110773 50. Ohmi Y, Tajima O, Ohkawa Y, Mori A, Sugiura Y, Furukawa K, et al. Gangliosides play pivotal roles in the regulation of complement systems and in the maintenance of integrity in nerve tissues. Proc Natl Acad Sci U S A. 2009; 106(52): 22405-10. doi.10.1073/pnas.0912336106 PMid:20018737 PMCid:PMC2792163 51. Kawashima N, Tsuji D, Okuda T, Itoh K, Nakayama K. Mechanism of abnormal growth in astrocytes derived from a mouse model of GM2 gangliosidosis. J Neurochem. 2009; 111(4): 1031-41. doi.10.1111/j.1471-4159.2009.06391.x PMid:19765188 52. Conzelmann E, Sandhoff K. AB variant of infantile GM2 gangliosidosis: deficiency of a factor necessary for stimulation of hexosaminidase A-catalyzed degradation of ganglioside GM2 and glycolipid GA2. Proc Natl Acad Sci U S A. 1978; 75(8): 3979-83. doi.10.1073/pnas.75.8.3979 PMid:99746 PMCid:PMC392913 53. Liu JR, Ding MP, Wei EQ, Luo JH, Song Y, Huang JZ, et al. GM1 stabilizes expression of NMDA receptor subunit 1 in the ischemic hemisphere of MCAo/reperfusion rat. J Zhejiang Univ Sci B. 2005; 6(4):254-8. doi.10.1631/jzus.2005.B0254 PMid:15754422 PMCid:PMC1389733 54. Chen X, Jin X, Huang F, Wang J, Cao X, Wang PG, et al. Design, synthesis and neurite outgrowth activity of novel ganglioside GM1 derivatives by remodeling of the fatty acid moiety. Eur J Med Chem. 2022; 241:114636. doi.10.1016/j.ejmech.2022.114636 PMid:35952400 55. Rabin SJ, Bachis A, Mocchetti I. Gangliosides activate Trk receptors by inducing the release of neurotrophins. J Biol Chem. 2002; 277(51): 49466-72. doi.10.1074/jbc.M203240200 PMid:12388556 56. Lim ST, Esfahani K, Avdoshina V, Mocchetti I. Exogenous gangliosides increase the release of brain-derived neurotrophic factor. Neuropharmacology. 2011; 60(7-8): 1160-7. doi.10.1016/j.neuropharm.2010.10.012 PMid:20971126 PMCid:PMC3045641 57. Caughlin S, Hepburn JD, Park DH, Jurcic K, Yeung KK, Cechetto DF, et al. Increased Expression of Simple Ganglioside Species GM2 and GM3 Detected by MALDI Imaging Mass Spectrometry in a Combined Rat Model of Aβ Toxicity and Stroke. PLoS One. 2015; 10(6): e0130364. doi.10.1371/journal.pone.0130364 PMid:26086081 PMCid:PMC4473074 58. Kwak DH, Kim SM, Lee DH, Kim JS, Kim SM, Lee SU, et al. Differential expression patterns of gangliosides in the ischemic cerebral cortex produced by middle cerebral artery occlusion. Mol Cells. 2005; 20(3): 354-60. doi.10.1016/S1016-8478(23)13238-9 PMid:16404149 59. Gong G, Yin L, Yuan L, Sui D, Sun Y, Fu H, et al. Ganglioside GM1 protects against high altitude cerebral edema in rats by suppressing the oxidative stress and inflammatory response via the PI3K/AKT-Nrf2 pathway. Mol Immunol. 2018; 95: 91-98. doi.10.1016/j.molimm.2018.02.001 PMid:29428576 60. Erfani S, Khaksari M, Oryan S, Shamsaei N, Aboutaleb N, Nikbakht F, et al. Visfatin reduces hippocampal CA1 cells death and improves learning and memory deficits after transient global ischemia/reperfusion. Neuropeptides. 2015; 49:63-8. doi.10.1016/j.npep.2014.12.004 PMid:25617953 61. Badeli H, Shahrokhi N, KhoshNazar M, Asadi-Shekaari M, Shabani M, Vaghefi HE, et al. Aqueous date fruit efficiency as preventing traumatic brain deterioration and improving pathological parameters after traumatic brain injury in male rats. Cell J. 2016; 18(3):416. 62. Li-Mao, Liao YJ, Hou GH, Yang ZB, Zuo ML. Monosialotetrahexosylganglioside protect cerebral ischemia/reperfusion injury through upregulating the expression of tyrosine hydroxylase by inhibiting lipid peroxidation. Biomed Pharmacother. 2016; 84: 1923-1929. doi.10.1016/j.biopha.2016.11.019 PMid:27847214 63. Zhang JZ, Jing L, Ma Y, Guo FY, Chang Y, Li PA. Monosialotetrahexosy-1 ganglioside attenuates diabetes-enhanced brain damage after transient forebrain ischemia and suppresses phosphorylation of ERK1/2 in the rat brain. Brain Res. 2010; 1344: 200-8. doi.10.1016/j.brainres.2010.05.044 PMid:20546707 PMCid:PMC2900456 64. Su D, Ma J, Yang J, Kang Y, Lv M, Li Y. Monosialotetrahexosy-1 ganglioside attenuates diabetes-associated cerebral ischemia/reperfusion injury through suppression of the endoplasmic reticulum stress-induced apoptosis. J Clin Neurosci. 2017; 41: 54-59. doi.10.1016/j.jocn.2017.03.047 PMid:28392211 65. Mahadik SP, Hungund BL, Gokhale VS, Ortiz A, Makar TK, Karpiak SE. Monosialoganglioside (GM1) restores membrane fatty acid levels in ischemic tissue after cortical focal ischemia in rat. Neurochem Int. 1993; 23(2): 163-72. doi.10.1016/0197-0186(93)90094-L PMid:8369740 66. Mahadik SP, Hawver DB, Hungund BL, Li YS, Karpiak SE. GM1 ganglioside treatment after global ischemia protects changes in membrane fatty acids and properties of Na+, K+-ATPase and Mg2+-ATPase. J Neurosci Res. 1989; 24(3):402-12. doi.10.1002/jnr.490240310 PMid:2531806 67. Erfani S, Aboutaleb N, Oryan S, Shamsaei N, Khaksari M, Kalalian-Moghaddam H, et al. Visfatin inhibits apoptosis and necrosis of hippocampus CA3 cells following transient global ischemia/reperfusion in rats. Int J Pept Res Ther. 2015; 21(2):223-8. doi.10.1007/s10989-014-9449-1 68. Liu JR, Ding MP, Wei EQ, Luo JH, Song Y, Huang JZ, et al. GM1 stabilizes expression of NMDA receptor subunit 1 in the ischemic hemisphere of MCAo/reperfusion rat. J Zhejiang Univ Sci B. 2005; 6(4): 254-8. doi.10.1631/jzus.2005.B0254 PMid:15754422 PMCid:PMC1389733 69. Karpiak SE, Li YS, Mahadik SP. Gangliosides reduce mortality due to global ischemia: membrane protection. Clin Neuropharmacol. 1986; 9 Suppl 4:338-40. 70. Govoni V, Granieri E, Tola MR, Paolino E, Casetta I, Fainardi E, et al. Exogenous gangliosides and Guillain-Barré syndrome. An observational study in the local health district of Ferrara, Italy. Brain. 1997; 120 (Pt 7):1123-30. doi.10.1093/brain/120.7.1123 PMid:9236625
|