[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Indexing Sources::
Guide for Authors::
Online Submission::
Ethics::
Articles archive::
For Reviewers::
Contact us::
AI::
::
Basic and Clinical Biochemistry and Nutrition
..
DOAJ
..
CINAHL
..
EBSCO
..
IMEMR
..
ISC
..
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
enamad
..
:: Volume 29, Issue 5 (Bimothly 2025) ::
Feyz Med Sci J 2025, 29(5): 529-541 Back to browse issues page
Alterations in brain ganglioside expression profiles and associated molecular responses in the pathophysiology of ischemia: A narrative review
Sohaila Erfani , Mahdiyeh Khoshnazar , Mozhgan Torabi *
Deparment of Biology, Faculty of Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran , m.torabi@scu.ac.ir
Abstract:   (333 Views)
Background and Aim: Gangliosides, a major class of glycosphingolipids abundant in the central nervous system, play a vital role in maintaining brain structure and function. This narrative review aims to synthesize current knowledge on the alterations in ganglioside expression profiles and their dependent molecular mechanisms in the pathophysiology of cerebral ischemia.
Methods: For this narrative review, a literature search was conducted using the keywords GM1, Gangliosides, Brain Ischemia, and Neural Tissue across multiple databases, including PubMed/Medline, Scopus, ScienceDirect, Google Scholar, Cochrane Library, ISI Web of Knowledge, and the Islamic World Science Citation Center (ISC). Studies published up to the year 2025 were retrieved for analysis.
Results: Evidence indicates that gangliosides, particularly GM1, have been involved in neuroprotective mechanisms against ischemic insult. Alterations in the levels and expression profiles of various gangliosides have been reported in neurological disorders, including cerebral ischemia. These changes can significantly affect cellular signaling, neuronal survival, and neural tissue repair. While preclinical studies have demonstrated the protective effects of gangliosides, an effective clinical therapy based on these findings has yet to be developed.
Conclusion: The current body of evidence underscores the significant role of gangliosides in the pathophysiology of cerebral ischemia and highlights their therapeutic potential. However, further research is imperative to fully elucidate the underlying molecular mechanisms and to develop effective therapeutic strategies.
Keywords: Gangliosides, Brain ischemia, GM1, Neuroprotection, Pathophysiology
Full-Text [PDF 726 kb]   (25 Downloads)    
Type of Study: Review | Subject: medicine, paraclinic
Received: 2025/07/27 | Revised: 2025/11/4 | Accepted: 2025/10/6 | Published: 2025/11/3
References
1. Khoshnazar M, Parvardeh S, Bigdeli MR. Alpha-pinene exerts neuroprotective effects via anti-inflammatory and anti-apoptotic mechanisms in a rat model of focal cerebral ischemia-reperfusion. J Stroke Cerebrovasc Dis. 2020; 29(8): 104977. doi.10.1016/j.jstrokecerebrovasdis.2020.104977 PMid:32689608
2. Khoshnazar M, Bigdeli MR, Parvardeh S, Pouriran R. Attenuating effect of α-pinene on neurobehavioural deficit, oxidative damage and inflammatory response following focal ischaemic stroke in rat. J Pharm Pharmacol. 2019; 71(11): 1725-1733. doi.10.1111/jphp.13164 PMid:31523814
3. Erfani S, Moghimi A, Aboutaleb N, Khaksari M. Nesfatin-1 Improve Spatial Memory Impairment Following Transient Global Cerebral Ischemia/Reperfusion via Inhibiting Microglial and Caspase-3 Activation. J Mol Neurosci. 2018; 65(3):377-384. doi.10.1007/s12031-018-1105-3 PMid:29956089
4. Erfani S, Moghimi A, Aboutaleb N, Khaksari M. Protective effects of Nesfatin-1 peptide on cerebral ischemia reperfusion injury via inhibition of neuronal cell death and enhancement of antioxidant defenses. Metab Brain Dis. 2019; 34(1):79-85. doi.10.1007/s11011-018-0323-2 PMid:30269302
5. Chen Z, Wang S, Shu T, Xia S, He Y, Yang Y. Progress in Research on Regulated Cell Death in Cerebral Ischaemic Injury After Cardiac Arrest. J Cell Mol Med. 2025; 29(3): e70404. doi.10.1111/jcmm.70404 PMid:39936900 PMCid:PMC11816164
6. Osterli E, Park Y, Hu K, Kasof G, Wiederhold T, Liu C, et al. The role of autophagy in ischemic brain injury. Autophagy Rep. 2025; 4(1): 2486445. doi.10.1080/27694127.2025.2486445 PMid:40395988 PMCid:PMC11980474
7. Stanzione R, Pietrangelo D, Cotugno M, Forte M, Rubattu S. Role of autophagy in ischemic stroke: insights from animal models and preliminary evidence in the human disease. Front Cell Dev Biol. 2024; 12: 1360014. doi.10.3389/fcell.2024.1360014 PMid:38590779 PMCid:PMC10999556
8. Qin C, Yang S, Chu YH, Zhang H, Pang XW, Chen L, et al. Signaling pathways involved in ischemic stroke: molecular mechanisms and therapeutic interventions. Signal Transduct Target Ther. 2022; 7(1): 215. doi.10.1038/s41392-022-01064-1 PMid:35794095 PMCid:PMC9259607
9. Schnaar RL. The Biology of Gangliosides. Adv Carbohydr Chem Biochem. 2019; 76:113-48. doi.10.1016/bs.accb.2018.09.002 PMid:30851743
10. Yuan H, Zhu B, Li C, Zhao Z. Ceramide in cerebrovascular diseases. Front Cell Neurosci. 2023; 17: 1191609. doi.10.3389/fncel.2023.1191609 PMid:37333888 PMCid:PMC10272456
11. Wu Y, Liu Y, Gulbins E, Grassmé H. The Anti-Infectious Role of Sphingosine in Microbial Diseases. Cells. 2021;10(5):1105. doi.10.3390/cells10051105 PMid:34064516 PMCid:PMC8147940
12. Sandhoff R, Schulze H, Sandhoff K. Ganglioside Metabolism in Health and Disease. Prog Mol Biol Transl Sci. 2018;156:1-62. doi.10.1016/bs.pmbts.2018.01.002 PMid:29747811
13. Guo Z. Ganglioside GM1 and the Central Nervous System. Int J Mol Sci. 2023; 24(11): 9558. doi.10.3390/ijms24119558 PMid:37298512 PMCid:PMC10253378
14. Sipione S, Monyror J, Galleguillos D, Steinberg N, Kadam V. Gangliosides in the Brain: Physiology, Pathophysiology and Therapeutic Applications. Front Neurosci. 2020; 14: 572965. doi.10.3389/fnins.2020.572965 PMid:33117120 PMCid:PMC7574889
15. Vasques JF, Gonçalves RG, da Silva-Junior AJ, Martins RS, Gubert F, Mendez-Otero R. Gangliosides in nervous system development, regeneration, and pathologies. Neural Regen Res. 2023; 18(1): 81-86. doi.10.4103/1673-5374.343890 PMid:35799513 PMCid:PMC9241395
16. Benady A, Freidin D, Pick CG, Rubovitch V. GM1 ganglioside prevents axonal regeneration inhibition and cognitive deficits in a mouse model of traumatic brain injury. Sci Rep. 2018; 8(1): 13340. doi.10.1038/s41598-018-31623-y PMid:30190579 PMCid:PMC6127193
17. Furukawa K, Ohmi Y, Tajima O, Ohkawa Y, Kondo Y, Shuting J, et al. Gangliosides in Inflammation and Neurodegeneration. Prog Mol Biol Transl Sci. 2018; 156: 265-287. doi.10.1016/bs.pmbts.2018.01.009 PMid:29747817
18. Schnaar RL. Glycolipid-mediated cell-cell recognition in inflammation and nerve regeneration. Arch Biochem Biophys. 2004;426(2):163-72. doi.10.1016/j.abb.2004.02.019 PMid:15158667
19. Varki A, Schnaar RL, Schauer R. Sialic Acids and Other Nonulosonic Acids. In: Varki A, Cummings RD, Esko JD, et al, editors. Essentials of Glycobiology. 3rd edition. Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press; 2015-2017. Chapter 15.
20. Sonnino S, Chigorno V. Ganglioside molecular species containing C18- and C20-sphingosine in mammalian nervous tissues and neuronal cell cultures. Biochim Biophys Acta. 2000; 1469(2): 63-77 .doi.10.1016/S0005-2736(00)00210-8 PMid:10998569
21. Yu RK, Tsai YT, Ariga T, Yanagisawa M. Structures, biosynthesis, and functions of gangliosides--an overview. J Oleo Sci. 2011; 60(10):537-44. doi.10.5650/jos.60.537 PMid:21937853 PMCid:PMC3684167
22. Karpiak SE, Mahadik SP, Wakade CG. Ganglioside reduction of ischemic injury. Crit Rev Neurobiol. 1990; 5(3):221-37.
23. Gupta G, Surolia A. Glycosphingolipids in microdomain formation and their spatial organization. FEBS Lett. 2010; 584(9):1634-41. doi.10.1016/j.febslet.2009.11.070 PMid:19941856
24. Iwabuchi K, Nakayama H, Iwahara C, Takamori K. Significance of glycosphingolipid fatty acid chain length on membrane microdomain-mediated signal transduction. FEBS Lett. 2010; 584(9): 1642-52. doi.10.1016/j.febslet.2009.10.043 PMid:19852959
25. Sandhoff R. Very long chain sphingolipids: tissue expression, function and synthesis. FEBS Lett. 2010; 584(9):1907-13. doi.10.1016/j.febslet.2009.12.032 PMid:20035755
26. Schnaar RL. Brain gangliosides in axon-myelin stability and axon regeneration. FEBS Lett. 2010; 584(9): 1741-7. doi.10.1016/j.febslet.2009.10.011 PMid:19822144 PMCid:PMC2856809
27. Yu RK, Suzuki Y, Yanagisawa M. Membrane glycolipids in stem cells. FEBS Lett. 2010; 584(9):1694-9. doi.10.1016/j.febslet.2009.08.026 PMid:19716368 PMCid:PMC4480870
28. Haughey NJ, Bandaru VV, Bae M, Mattson MP. Roles for dysfunctional sphingolipid metabolism in Alzheimer's disease neuropathogenesis. Biochim Biophys Acta. 2010; 1801(8): 878-86. doi.10.1016/j.bbalip.2010.05.003 PMid:20452460 PMCid:PMC2907186
29. Ohmi Y, Tajima O, Ohkawa Y, Mori A, Sugiura Y, Furukawa K, et al. Gangliosides play pivotal roles in the regulation of complement systems and in the maintenance of integrity in nerve tissues. Proc Natl Acad Sci U S A. 2009; 106(52): 22405-10. doi.10.1073/pnas.0912336106 PMid:20018737 PMCid:PMC2792163
30. Posse de Chaves E, Sipione S. Sphingolipids and gangliosides of the nervous system in membrane function and dysfunction. FEBS Lett. 2010; 584(9):1748-59. doi.10.1016/j.febslet.2009.12.010 PMid:20006608
31. Chan K, Lanthier P, Liu X, Sandhu JK, Stanimirovic D, Li J. MALDI mass spectrometry imaging of gangliosides in mouse brain using ionic liquid matrix. Anal Chim Acta. 2009; 639(1-2):57-61. doi.10.1016/j.aca.2009.02.051 PMid:19345758
32. Sugiura Y, Shimma S, Konishi Y, Yamada MK, Setou M. Imaging mass spectrometry technology and application on ganglioside study; visualization of age-dependent accumulation of C20-ganglioside molecular species in the mouse hippocampus. PLoS One. 2008; 3(9):e3232. doi.10.1371/journal.pone.0003232 PMid:18800170 PMCid:PMC2532745
33. Kawashima N, Tsuji D, Okuda T, Itoh K, Nakayama K. Mechanism of abnormal growth in astrocytes derived from a mouse model of GM2 gangliosidosis. J Neurochem. 2009; 111(4): 1031-41. doi.10.1111/j.1471-4159.2009.06391.x PMid:19765188
34. Conzelmann E, Sandhoff K. AB variant of infantile GM2 gangliosidosis: deficiency of a factor necessary for stimulation of hexosaminidase A-catalyzed degradation of ganglioside GM2 and glycolipid GA2. Proc Natl Acad Sci U S A. 1978; 75(8): 3979-83. doi.10.1073/pnas.75.8.3979 PMid:99746 PMCid:PMC392913
35. Sipione S, Monyror J, Galleguillos D, Steinberg N, Kadam V. Gangliosides in the Brain: Physiology, Pathophysiology and Therapeutic Applications. Front Neurosci. 2020; 14:572965. doi.10.3389/fnins.2020.572965 PMid:33117120 PMCid:PMC7574889
36. Ledeen R, Wu G. Gangliosides of the Nervous System. Methods Mol Biol. 2018;1804:19-55. doi.10.1007/978-1-4939-8552-4_2 PMid:29926403
37. Ngamukote S, Yanagisawa M, Ariga T, Ando S, Yu RK. Developmental changes of glycosphingolipids and expression of glycogenes in mouse brains. J Neurochem. 2007; 103(6):2327-41. doi.10.1111/j.1471-4159.2007.04910.x PMid:17883393
38. Sarbu M, Ica R, Zamfir AD. Gangliosides as Biomarkers of Human Brain Diseases: Trends in Discovery and Characterization by High-Performance Mass Spectrometry. Int J Mol Sci. 2022; 23(2): 693. doi.10.3390/ijms23020693 PMid:35054879 PMCid:PMC8775466
39. Sandhoff R, Sandhoff K. Emerging concepts of ganglioside metabolism. FEBS Lett. 2018; 592(23): 3835-3864. doi.10.1002/1873-3468.13114 PMid:29802621
40. van Echten-Deckert G, Herget T. Sphingolipid metabolism in neural cells. Biochim Biophys Acta. 2006; 1758(12):1978-94. doi.10.1016/j.bbamem.2006.06.009 PMid:16843432
41. Tettamanti G, Bassi R, Viani P, Riboni L. Salvage pathways in glycosphingolipid metabolism. Biochimie. 2003; 85(3-4): 423-37. doi.10.1016/S0300-9084(03)00047-6 PMid:12770781
42. Tettamanti G. Ganglioside/glycosphingolipid turnover: new concepts. Glycoconj J. 2004; 20(5): 301-17. doi.10.1023/B:GLYC.0000033627.02765.cc PMid:15229395
43. Guo Z. Ganglioside GM1 and the Central Nervous System. Int J Mol Sci. 2023; 24(11): 9558. doi.10.3390/ijms24119558 PMid:37298512 PMCid:PMC10253378
44. Wang J, Zhang Q, Lu Y, Dong Y, Dhandapani KM, Brann DW, et al. Ganglioside GD3 is up-regulated in microglia and regulates phagocytosis following global cerebral ischemia. J Neurochem. 2021; 158(3):737-52. doi.10.1111/jnc.15455 PMid:34133773 PMCid:PMC8363563
45. Li L, Tian J, Long MK, Chen Y, Lu J, Zhou C, et al. Protection against Experimental Stroke by Ganglioside GM1 Is Associated with the Inhibition of Autophagy. PLoS One. 2016;11(1):e0144219. doi.10.1371/journal.pone.0144219 PMid:26751695 PMCid:PMC4709082
46. Lim H, Lee J, You B, Oh JH, Mok HJ, Kim YS, et al. GT1b functions as a novel endogenous agonist of toll-like receptor 2 inducing neuropathic pain. EMBO J. 2020; 39(6):e102214. doi.10.15252/embj.2019102214 PMid:32030804 PMCid:PMC7073460
47. Caughlin S, Hepburn JD, Park DH, Jurcic K, Yeung KK, Cechetto DF, et al. Increased Expression of Simple Ganglioside Species GM2 and GM3 Detected by MALDI Imaging Mass Spectrometry in a Combined Rat Model of Aβ Toxicity and Stroke. PLoS One. 2015; 10(6): e0130364. doi.10.1371/journal.pone.0130364 PMid:26086081 PMCid:PMC4473074
48. Sipione S, Monyror J, Galleguillos D, Steinberg N, Kadam V. Gangliosides in the Brain: Physiology, Pathophysiology and Therapeutic Applications. Front Neurosci. 2020; 14:572965. doi.10.3389/fnins.2020.572965 PMid:33117120 PMCid:PMC7574889
49. Whitehead SN, Chan KH, Gangaraju S, Slinn J, Li J, Hou ST. Imaging mass spectrometry detection of gangliosides species in the mouse brain following transient focal cerebral ischemia and long-term recovery. PLoS One. 2011; 6(6): e20808. doi.10.1371/journal.pone.0020808 PMid:21687673 PMCid:PMC3110773
50. Ohmi Y, Tajima O, Ohkawa Y, Mori A, Sugiura Y, Furukawa K, et al. Gangliosides play pivotal roles in the regulation of complement systems and in the maintenance of integrity in nerve tissues. Proc Natl Acad Sci U S A. 2009; 106(52): 22405-10. doi.10.1073/pnas.0912336106 PMid:20018737 PMCid:PMC2792163
51. Kawashima N, Tsuji D, Okuda T, Itoh K, Nakayama K. Mechanism of abnormal growth in astrocytes derived from a mouse model of GM2 gangliosidosis. J Neurochem. 2009; 111(4): 1031-41. doi.10.1111/j.1471-4159.2009.06391.x PMid:19765188
52. Conzelmann E, Sandhoff K. AB variant of infantile GM2 gangliosidosis: deficiency of a factor necessary for stimulation of hexosaminidase A-catalyzed degradation of ganglioside GM2 and glycolipid GA2. Proc Natl Acad Sci U S A. 1978; 75(8): 3979-83. doi.10.1073/pnas.75.8.3979 PMid:99746 PMCid:PMC392913
53. Liu JR, Ding MP, Wei EQ, Luo JH, Song Y, Huang JZ, et al. GM1 stabilizes expression of NMDA receptor subunit 1 in the ischemic hemisphere of MCAo/reperfusion rat. J Zhejiang Univ Sci B. 2005; 6(4):254-8. doi.10.1631/jzus.2005.B0254 PMid:15754422 PMCid:PMC1389733
54. Chen X, Jin X, Huang F, Wang J, Cao X, Wang PG, et al. Design, synthesis and neurite outgrowth activity of novel ganglioside GM1 derivatives by remodeling of the fatty acid moiety. Eur J Med Chem. 2022; 241:114636. doi.10.1016/j.ejmech.2022.114636 PMid:35952400
55. Rabin SJ, Bachis A, Mocchetti I. Gangliosides activate Trk receptors by inducing the release of neurotrophins. J Biol Chem. 2002; 277(51): 49466-72. doi.10.1074/jbc.M203240200 PMid:12388556
56. Lim ST, Esfahani K, Avdoshina V, Mocchetti I. Exogenous gangliosides increase the release of brain-derived neurotrophic factor. Neuropharmacology. 2011; 60(7-8): 1160-7. doi.10.1016/j.neuropharm.2010.10.012 PMid:20971126 PMCid:PMC3045641
57. Caughlin S, Hepburn JD, Park DH, Jurcic K, Yeung KK, Cechetto DF, et al. Increased Expression of Simple Ganglioside Species GM2 and GM3 Detected by MALDI Imaging Mass Spectrometry in a Combined Rat Model of Aβ Toxicity and Stroke. PLoS One. 2015; 10(6): e0130364. doi.10.1371/journal.pone.0130364 PMid:26086081 PMCid:PMC4473074
58. Kwak DH, Kim SM, Lee DH, Kim JS, Kim SM, Lee SU, et al. Differential expression patterns of gangliosides in the ischemic cerebral cortex produced by middle cerebral artery occlusion. Mol Cells. 2005; 20(3): 354-60. doi.10.1016/S1016-8478(23)13238-9 PMid:16404149
59. Gong G, Yin L, Yuan L, Sui D, Sun Y, Fu H, et al. Ganglioside GM1 protects against high altitude cerebral edema in rats by suppressing the oxidative stress and inflammatory response via the PI3K/AKT-Nrf2 pathway. Mol Immunol. 2018; 95: 91-98. doi.10.1016/j.molimm.2018.02.001 PMid:29428576
60. Erfani S, Khaksari M, Oryan S, Shamsaei N, Aboutaleb N, Nikbakht F, et al. Visfatin reduces hippocampal CA1 cells death and improves learning and memory deficits after transient global ischemia/reperfusion. Neuropeptides. 2015; 49:63-8. doi.10.1016/j.npep.2014.12.004 PMid:25617953
61. Badeli H, Shahrokhi N, KhoshNazar M, Asadi-Shekaari M, Shabani M, Vaghefi HE, et al. Aqueous date fruit efficiency as preventing traumatic brain deterioration and improving pathological parameters after traumatic brain injury in male rats. Cell J. 2016; 18(3):416.
62. Li-Mao, Liao YJ, Hou GH, Yang ZB, Zuo ML. Monosialotetrahexosylganglioside protect cerebral ischemia/reperfusion injury through upregulating the expression of tyrosine hydroxylase by inhibiting lipid peroxidation. Biomed Pharmacother. 2016; 84: 1923-1929. doi.10.1016/j.biopha.2016.11.019 PMid:27847214
63. Zhang JZ, Jing L, Ma Y, Guo FY, Chang Y, Li PA. Monosialotetrahexosy-1 ganglioside attenuates diabetes-enhanced brain damage after transient forebrain ischemia and suppresses phosphorylation of ERK1/2 in the rat brain. Brain Res. 2010; 1344: 200-8. doi.10.1016/j.brainres.2010.05.044 PMid:20546707 PMCid:PMC2900456
64. Su D, Ma J, Yang J, Kang Y, Lv M, Li Y. Monosialotetrahexosy-1 ganglioside attenuates diabetes-associated cerebral ischemia/reperfusion injury through suppression of the endoplasmic reticulum stress-induced apoptosis. J Clin Neurosci. 2017; 41: 54-59. doi.10.1016/j.jocn.2017.03.047 PMid:28392211
65. Mahadik SP, Hungund BL, Gokhale VS, Ortiz A, Makar TK, Karpiak SE. Monosialoganglioside (GM1) restores membrane fatty acid levels in ischemic tissue after cortical focal ischemia in rat. Neurochem Int. 1993; 23(2): 163-72. doi.10.1016/0197-0186(93)90094-L PMid:8369740
66. Mahadik SP, Hawver DB, Hungund BL, Li YS, Karpiak SE. GM1 ganglioside treatment after global ischemia protects changes in membrane fatty acids and properties of Na+, K+-ATPase and Mg2+-ATPase. J Neurosci Res. 1989; 24(3):402-12. doi.10.1002/jnr.490240310 PMid:2531806
67. Erfani S, Aboutaleb N, Oryan S, Shamsaei N, Khaksari M, Kalalian-Moghaddam H, et al. Visfatin inhibits apoptosis and necrosis of hippocampus CA3 cells following transient global ischemia/reperfusion in rats. Int J Pept Res Ther. 2015; 21(2):223-8. doi.10.1007/s10989-014-9449-1
68. Liu JR, Ding MP, Wei EQ, Luo JH, Song Y, Huang JZ, et al. GM1 stabilizes expression of NMDA receptor subunit 1 in the ischemic hemisphere of MCAo/reperfusion rat. J Zhejiang Univ Sci B. 2005; 6(4): 254-8. doi.10.1631/jzus.2005.B0254 PMid:15754422 PMCid:PMC1389733
69. Karpiak SE, Li YS, Mahadik SP. Gangliosides reduce mortality due to global ischemia: membrane protection. Clin Neuropharmacol. 1986; 9 Suppl 4:338-40.
70. Govoni V, Granieri E, Tola MR, Paolino E, Casetta I, Fainardi E, et al. Exogenous gangliosides and Guillain-Barré syndrome. An observational study in the local health district of Ferrara, Italy. Brain. 1997; 120 (Pt 7):1123-30. doi.10.1093/brain/120.7.1123 PMid:9236625
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Erfani S, Khoshnazar M, Torabi M. Alterations in brain ganglioside expression profiles and associated molecular responses in the pathophysiology of ischemia: A narrative review. Feyz Med Sci J 2025; 29 (5) :529-541
URL: http://feyz.kaums.ac.ir/article-1-5382-en.html


Creative Commons License
This open access journal is licensed under a Creative Commons Attribution-NonCommercial ۴.۰ International License. CC BY-NC ۴. Design and publishing by Kashan University of Medical Sciences.
Copyright ۲۰۲۳© Feyz Medical Sciences Journal. All rights reserved.
Volume 29, Issue 5 (Bimothly 2025) Back to browse issues page
مجله علوم پزشکی فیض Feyz Medical Sciences Journal
Persian site map - English site map - Created in 0.14 seconds with 46 queries by YEKTAWEB 4725