1. Jakimovski D, Kavak KS, Zakalik K, McGraw C, Gottesman M, Coyle PK, et al. Patient-reported outcomes based on discontinuation or continuous treatment with natalizumab: New York State Multiple Sclerosis Consortium (NYSMSC) study. J Neurol Sci. 2023; 455: 122781. doi:10.1016/j.jns.2023.122781 PMID: 37979415. 2. Mark M, Duff E. Primary Care Management of Hypertension in Patients with Multiple Sclerosis. J Nurse Pract. 2023; 19(7): 104652. doi:10.1016/j.nurpra.2023.104652 3. Ashtari F, Kavosh A, Baghbanian SM, Mir NH, Hosseini S, Razazian N, et al. A national registry-based study of ethnic differences in people with multiple sclerosis in Iran. Clin Neurol Neurosurg. 2024; 239: 108216. doi:10.1016/j.clineuro.2024.108216 PMID: 38490075 4. Shafiee A, Soltani H, Teymouri Athar MM, Jafarabady K, Mardi P. The prevalence of depression and anxiety among Iranian people with multiple sclerosis: A systematic review and meta-analysis. Mult Scler Relat Disord. 2023; 78: 104922. doi:10.1016/j.msard.2023.104922 PMID: 37597350 5. Ashtari F, Shaygannejad V, Heidari F, Akbari M. Prevalence of Familial Multiple Sclerosis in Isfahan, Iran. J Isfahan Med Sch. 2011; 29(138):555-561. 6. Sofowora A, Ogunbodede E, Onayade A. The role and place of medicinal plants in the strategies for disease prevention. Afr J Tradit Complement Altern Med. 2013; 10(5): 210-229. doi:10.4314/ajtcam.v10i5.2 PMID: 24311829, PMCID: PMC3847409. 7. Bokelmann JM. Frankincense/Boswellia (Boswellia serrata/sacra/carterii): Bark Resin. In: Bokelmann JMBTMH in PC. Elsevier; 2022:351-360. doi:10.1016/B978-0-323-84676-9.00046-5 8. Efferth T, Oesch F. Anti-inflammatory and anti-cancer activities of frankincense: targets, treatments and toxicities. Semin Cancer Biol. 2022; 80: 39-57. doi: 10.1016/j.semcancer.2020.01.015 PMID: 32027979. 9. Yuan G, Wahlqvist ML, He G, Yang M, Li D. Natural products and anti-inflammatory activity. Asia Pac J Clin Nutr. 2006; 15(2): 143-152. PMID: 16672197. 10. Wang F, Li ZL, Cui HH, Hua HM, Jing YK, Liang SW. Two new triterpenoids from the resin of Boswellia carterii. J Asian Nat Prod Res. 2011; 13(3): 193-197. doi:10.1080/10286020.2010.548808 PMID: 21409679. 11. Siddiqui MZ. Boswellia serrata, a potential antiinflammatory agent: An overview. Indian J Pharm Sci. 2011; 73(3): 255-261. doi:10.4103/0250-474X.93507 PMID: 22457547, PMCID: PMC3309643. 12. Shah BA, Qazi GN, Taneja SC. Boswellic acids: A group of medicinally important compounds. Nat Prod Rep. 2009; 26(1):72-89. doi:10.1039/b809437n PMID: 19374123. 13. Wesołowska A, Nikiforuk A, Michalska K, Kisiel W, Chojnacka-Wójcik E, et al. Anti-inflammatory activities of the triterpene acids from the resin of Boswellia carteri. J Ethnopharmacol. 2006; 107(2): 249-253. doi: 10.1016/j.jep.2006.03.006 PMID: 16621377. 14. Mojaverrostami S, Bojnordi MN, Ghasemi-Kasman M, Ebrahimzadeh MA, Hamidabadi HG. A review of herbal therapy in multiple sclerosis. Adv Pharm Bull. 2018; 8(4): 575-590. doi:10.15171/apb.2018.066 PMID: 30607330, PMCID: PMC6311642. 15. Lovera J, Bagert B, Smoot K, Morris CD, Frank R, Bogardus K, et al. Ginkgo biloba for the improvement of cognitive performance in multiple sclerosis: A randomized, placebo-controlled trial. Mult Scler. 2007; 13(3): 376-385. doi:10.1177/1352458506071213 PMID: 17439907. 16. Naziroglu M, Kutluhan S, Övey IS, Aykur M, Yurekli VA. Modulation of oxidative stress, apoptosis, and calcium entry in leukocytes of patients with multiple sclerosis by Hypericum perforatum. Nutr Neurosci. 2014; 17(5): 214-221. doi:10.1179/1476830513Y.0000000083 PMID: 24075078. 17. Fahmy HM, Noor NA, Mohammed FF, Elsayed AA, Radwan NM. Nigella sativa as an anti-inflammatory and promising remyelinating agent in the cortex and hippocampus of experimental autoimmune encephalomyelitis-induced rats. J Basic Appl Zool. 2014; 67(5): 182-195. doi:10.1016/j.jobaz.2014.08.005 18. Mahmoudi A, Hosseini-Sharifabad A, Monsef-Esfahani HR, Yazdinejad AR, Khanavi M, Roghani A, et al. Evaluation of systemic administration of Boswellia papyrifera extracts on spatial memory retention in male rats. J Nat Med. 2011; 65(3-4):519-525. doi:10.1007/s11418-011-0533-y PMID: 21479965. 19. Ammon HPT. Modulation of the immune system by Boswellia serrata extracts and boswellic acids. Eur Phytomedicine. 2010;17(11):862-867. doi:10.1016/j.phymed.2010.03.003 PMID: 20696559. 20. Sedighi B, Pardakhty A, Kamali H, Shafiee K, Hasani BN. Effect of Boswellia papyrifera on cognitive impairment in multiple sclerosis. Iran J Neurol. 2014; 13 (3):149-153. PMID: 25422734, PMCID: PMC4240932. 21. Majdinasab N, Siahpush A, Mousavinejad SK, Malayeri A, Sajedi SA, Bizhanzadeh P. Effect of Boswellia serrata on cognitive impairment in multiple sclerosis patients. J Herb Med. 2016; 6(3):119-127. doi:10.1016/j.hermed.2016.05.003 22. Stürner KH, Stellmann JP, Dörr J, Paul F, Friede T, Schammler S, et al. A standardised frankincense extract reduces disease activity in relapsing-remitting multiple sclerosis (the SABA phase IIa trial). J Neurol Neurosurg Psychiatry. 2018; 89(4): 330-338. doi:10.1136/jnnp-2017-317101 PMID: 29248894 23. Nazeri M, Bazrafshan H, Abolhasani Foroughi A. Serum inflammatory markers in patients with multiple sclerosis and their association with clinical manifestations and MRI findings. Acta Neurol Belg. 2022; 122(5): 1187-1193. doi:10.1007/s13760-021-01647-9 PMID: 33837496 24. Holmøy T, Løken-Amsrud KI, Bakke SJ, Beiske AG, Bjerve KS, Hovdal H, Lilleås F, et al. Inflammation Markers in Multiple Sclerosis: CXCL16 Reflects and May Also Predict Disease Activity. PLoS One. 2013; 8(9): e75021. doi:10.1371/journal.pone.0075021 PMID: 24069377, PMCID: PMC3777920 25. Olsson A, Gustavsen S, Gisselø Lauridsen K, Chenoufi Hasselbalch I, Sellebjerg F, Bach Søndergaard H, et al. Neutrophil-to-lymphocyte ratio and CRP as biomarkers in multiple sclerosis: A systematic review. Acta Neurol Scand. 2021; 143(6): 577-586. doi:10.1111/ane.13401 PMID: 33591593. 26. Atzeni F, Sarzi-Puttini P. Tumor Necrosis Factor. In: Maloy S, Hughes KBTBE of G (Second E, eds. Brenner’s Encyclopedia of Genetics: Second Edition. Academic Press; 2013:229-231. doi:10.1016/B978-0-12-374984-0.01594-1 27. Williams SK, Maier O, Fischer R, Fairless R, Hochmeister S, Stojic A, et al. Antibody-mediated inhibition of TNFR1 attenuates disease in a mouse model of multiple sclerosis. PLoS One. 2014; 9(2): e90117. doi:10.1371/journal.pone.0090117 PMID: 24587232, PMCID: PMC3938650 28. Madsen PM, Motti D, Karmally S, Szymkowski DE, Lambertsen KL, Bethea JR et al. Oligodendroglial TNFR2 mediates membrane TNF-dependent repair in experimental autoimmune encephalomyelitis by promoting oligodendrocyte differentiation and remyelination. J Neurosci. 2016; 36(18): 5128-5143. doi:10.1523/JNEUROSCI.0211-16.2016 PMID: 27147664, PMCID: PMC4854972. 29. El Ayadi A, Herndon DN, Finnerty CC. 21- Biomarkers in Burn Patient Care. InTotal burn care (Fifth E, ed. Elsevier; 2018:232-235.e2. doi:10.1016/B978-0-323-47661-4.00021-6. 30. Yalachkov Y, Anschuetz V, Jakob J, Schaller-Paule MA, Schaefer JH, Reilaender A, et al. C-Reactive Protein Levels and Gadolinium-Enhancing Lesions Are Associated With the Degree of Depressive Symptoms in Newly Diagnosed Multiple Sclerosis. Front Neurol. 2021; 12: 719088. doi:10.3389/fneur.2021.719088 PMID: 34764926, PMCID: PMC8575739. 31. Ortiz GG, Pacheco-Moisés FP, Bitzer-Quintero OK, Ramírez-Anguiano AC, Flores-Alvarado LJ, Ramírez-Ramírez V, et al. Immunology and oxidative stress in multiple sclerosis: Clinical and basic approach. Clin Dev Immunol. 2013; 2013: 708659. doi:10.1155/2013/708659 PMID: 24174971, PMCID: PMC3794553. 32. Couraud PO. Infiltration of inflammatory cells through brain endothelium. Pathol Biol. 1998; 46(3): 176-180. PMID: 9769913. 33. Muyumba NW, Mutombo SC, Sheridan H, Nachtergael A, Duez P. Quality control of herbal drugs and preparations: The methods of analysis, their relevance and applications. Talanta Open. 2021; 4:100070. doi:10.1016/j.talo.2021.100070 34. Chaachouay N, Zidane L. Plant-Derived Natural Products: A Source for Drug Discovery and Development. Drugs Drug Candidates. 2024; 3(1): 184-207. doi:10.3390/ddc3010011 35. Zarei M, Mohammadi S, Abolhassani N, Asgari Nematian M. The Antinociceptive Effects of Hydroalcoholic Extract of Bryonia dioica in Male Rats. Avicenna J Neuro Psych Physiol. 2015; 2(1): 285-290. doi:10.17795/ajnpp-25761 36. Kiaei MR, HedayatMofidi M, Koohsar F, et al. Comparison of Two Methods: Qualitative and Quantitative Study of C-Reactive Protein. mljgoums. 2014; 8(1): 29-35 37. Hirsch HH, Kardas P, Kranz D, Leboeuf C. The human JC polyomavirus (JCPyV): Virological background and clinical implications. Apmis. 2013; 121(8): 685-727. doi:10.1111/apm.12128 PMID: 23781977. 38. Okuda Y, Sakoda S, Fujimura H, Saeki Y, Kishimoto T, Yanagihara T. IL-6 plays a crucial role in the induction phase of myelin oligodendrocyte glycoprotein 35-55 induced experimental autoimmune encephalomyelitis. J Neuroimmunol. 1999; 101(2): 188-196. doi:10.1016/S0165-5728(99)00139-3 PMID: 10580801. 39. Haase S, Linker RA. Inflammation in multiple sclerosis. Ther Adv Neurol Disord. 2021; 14: 17562864211007687. doi:10.1177/17562864211007687 PMID: 33948118, PMCID: PMC8053832. 40. Upadhayay S, Mehan S, Prajapati A, Sethi P, Suri M, Zawawi A, et al. Nrf2/HO-1 Signaling Stimulation through Acetyl-11-Keto-Beta-Boswellic Acid (AKBA) Provides Neuroprotection in Ethidium Bromide-Induced Experimental Model of Multiple Sclerosis. Genes (Basel). 2022; 13(8):1324. doi: 10.3390/genes13081324 PMID: 35893061. 41. Syrovets T, Büchele B, Krauss C, Laumonnier Y, Simmet T. Acetyl-boswellic acids inhibit lipopolysaccharide-mediated TNF-alpha induction in monocytes by direct interaction with IkappaB kinases. J Immunol. 2005; 174(1):498-506. doi:10.4049/jimmunol.174.1.498 PMID: 15611276. 42. Meyiah A, Shawkat MY, Ur Rehman N, Al-Harrasi A, Elkord E. Effect of Boswellic acids on T cell proliferation and activation. Int Immunopharmacol. 2023; 122: 110668. doi:10.1016/j.intimp.2023.110668 PMID: 37487264. 43. Eren F, Demir A. C-reactive protein/albumin ratio in patients with multiple sclerosis and its relationship with disease subtype and disability. J Surg Med. 2020; 4(11): 974-977. doi:10.28982/josam.736846 44. Ahmed H, Mohamed E, El-Dsoki S. Evidences for the promising therapeutic potential of boswellia serrata against alzheimer’s disease: Pre-clinical study. Int J Pharm Pharm Sci. 2014; 6(11):384-392. 45. Moudgil KD, Venkatesha SH. The Anti-Inflammatory and Immunomodulatory Activities of Natural Products to Control Autoimmune Inflammation. Int J Mol Sci. 2022; 24(1):95. doi:10.3390/ijms24010095 PMID: 36613560, PMCID: PMC9820125. 46. Smith KJ, Lassmann H. The role of nitric oxide in multiple sclerosis. Lancet Neurol. 2002; 1(4):232-241. doi:10.1016/s1474-4422(02)00102-3 PMID: 12849456. 47. Nadeem A, Ahmad SF, Al-Harbi NO, Sarawi W, Attia SM, Alanazi WA, et al. Acetyl-11-keto-β-boswellic acid improves clinical symptoms through modulation of Nrf2 and NF-κB pathways in SJL/J mouse model of experimental autoimmune encephalomyelitis. Int Immunopharmacol. 2022; 107: 108703. doi:10.1016/j.intimp.2022.108703 PMID: 35306283. 48. Gomaa AA, Mohamed HS, Abd-ellatief RB, Gomaa MA. Boswellic acids/Boswellia serrata extract as a potential COVID-19 therapeutic agent in the elderly. Inflammopharmacology. 2021; 29(4):1033-1048. doi:10.1007/s10787-021-00841-8 PMID: 34224069, PMCID: PMC8256410. 49. Su S, Duan J, Chen T, Huang X, Shang E, Yu L, et al. Frankincense and myrrh suppress inflammation via regulation of the metabolic profiling and the MAPK signaling pathway. Sci Rep. 2015; 5:13668. doi:10.1038/srep13668 PMID: 26329643, PMCID: PMC4556964.
|