[صفحه اصلی ]   [Archive] [ English ]  
:: صفحه اصلي :: درباره مجله :: شماره جاری :: تمام شماره‌ها :: جستجو :: ثبت نام :: ارسال مقاله :: تماس با ما ::
بخش‌های اصلی
صفحه اصلی::
اطلاعات نشریه::
بانک‌ها و نمایه‌ها::
آرشیو مجله و مقالات::
برای نویسندگان::
اخلاق در پژوهش::
برای داوران::
تسهیلات پایگاه::
تماس با ما::
::
Basic and Clinical Biochemistry and Nutrition
..
DOAJ
..
CINAHL
..
EBSCO
..
IMEMR
..
ISC
..
جستجو در پایگاه

جستجوی پیشرفته
..
دریافت اطلاعات پایگاه
نشانی پست الکترونیک خود را برای دریافت اطلاعات و اخبار پایگاه، در کادر زیر وارد کنید.
..
enamad
..
:: دوره 28، شماره 4 - ( دوماه نامه 1403 ) ::
جلد 28 شماره 4 صفحات 363-353 برگشت به فهرست نسخه ها
تاثیر اکتاپامین بر گیرنده انسولینی IGF1R و میزان مرگ سلولی در هیپوکامپ رت‌های آلزایمری شده نژاد ویستار
نسیبه محقق ، مریم قبه* ، زهرا کیان مهر
دانشگاه آزاد اسلامی، واحد علوم و تحقیقات، گروه علوم شناختی، تهران، ایران ، Biochemistry.ghobeh@gmail.com
چکیده:   (443 مشاهده)

زمینه و هدف: بیماری آلزایمر یک اختلال عصبی است که در ابتدا با اختلالات خفیف حافظه مشخص می‌شود و در نهایت منجر به مرگ سلول­ ها در مغز می ­گردد. هدف از این مطالعه تعیین اثر اکتاپامین بر حافظه، فعالیت آنزیم ­های آنتی ­اکسیدانی، میزان بیان گیرنده انسولینی IGF1R، میزان مرگ سلولی و نیز تعداد پلاک­ های آمیلوئیدی در رت­ های آلزایمری شده نژاد ویستار می باشد.
روش‌ها: در این مطالعه تجربی، 27 رت نر نژاد ویستار به ­طور تصادفی به 3 گروه (9 رت) تقسیم شدند: گروه کنترل، بدون جراحی و تیمار خاص بودند، گروه شم، با تزریق آمیلوئید بتا، آلزایمری شدند و نرمال سالین به صورت درون صفاقی دریافت کردند، و گروه درمانی، پس از آلزایمری شدن، اکتاپامین به­ صورت درون صفاقی دریافت نمودند. پارامترهای رفتاری، آنزیمی، بافت شناسی و نیز میزان بیان گیرنده انسولینی IGF1R سنجش شدند.
یافته‌ها: تست رفتاری نشان داد که میانگین تاخیر در ورود به محفظه تاریک دستگاه شاتل باکس در تیمار با اکتاپامین نسبت به گروه شم افزایش معناداری داشته است (0/05>P). تعداد نسبی پلاک ­های آمیلوئیدی و نیز درصد سلول ­های مرده در هیپوکامپ مغز در تیمار با اکتاپامین نسبت به گروه شم کاهش معناداری نشان داد (0/001>P). بیان گیرنده انسولینی IGF1R و نیز فعالیت آنزیم ­های گلوتاتیون پراکسیداز و کاتالاز در تیمار با اکتاپامین نسبت به گروه شم افزایش معناداری داشت (0/001>P).
نتیجه‌گیری: اکتاپامین به­ طور معنی‌داری توانست اختلالات ایجاد شده در حافظه، میزان فعالیت آنزیم ­های آنتی­اکسیدانی گلوتاتیون پراکسیداز و کاتالاز، مرگ سلول­ های عصبی و نیز پلاک ­های آمیلوئیدی ایجاد شده در بیماری آلزایمر را بهبود بخشد.

واژه‌های کلیدی: آلزایمر، اکتاپامین، گیرنده انسولینی IGF1R، مرگ سلولی
متن کامل [PDF 974 kb]   (290 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: عمومى
دریافت: 1402/10/29 | ویرایش نهایی: 1403/8/2 | پذیرش: 1403/4/10 | انتشار: 1403/8/2
فهرست منابع
1. Amakiri N, Kubosumi A, Tran J, Reddy PH. Amyloid beta and microRNAs in Alzheimer's disease. Front Neurosci. 2019; 13:430. doi:10.3389/fnins.2019.00430 PMID: 31130840 PMCID: PMC6510214
2. Yan Y, Xu TH, Melcher K, Xu HE. Defining the minimum substrate and charge recognition model of gamma-secretase. Acta Pharmacol Sin. 2017; 38(10):1412-24. doi:10.1038/aps.2017.35 PMID: 28414207 PMCID: PMC5630670
3. Du X, Wang, X, Geng M. Alzheimer's disease hypothesis and related therapies. Transl Neurodegener. 2018; 7(1):1-7. doi:10.1186/s40035-018-0107-y PMID: 29423193 PMCID: PMC5789526
4. Nikseresht Z, Ahangar N, Badrikoohi M, Babaei P. Synergistic enhancing-memory effect of D-serine and RU360, a mitochondrial calcium uniporter blocker in rat model of Alzheimer's disease. Behav Brain Res. 2021; 409:113307. doi:10.1016/j.bbr.2021.113307 PMID: 33872664
5. Aghajanov M, Matinyan S, Chavushyan V, Danielyan M, Karapetyan G, Mirumyan M, et al. The Involvement of Insulin-Like Growth Factor 1 and Nerve Growth Factor in Alzheimer's Disease-Like Pathology and Survival Role of the Mix of Embryonic Proteoglycans: Electrophysiological Fingerprint, Structural Changes and Regulatory Effects on Neurotrophins. Int J Mol Sci. 2021; 22(13): 7084. doi:10.3390/ijms22137084 PMID: 34209299 PMCID: PMC8267974
6. O'Kusky J, Ye P. Neurodevelopmental effects of insulin-like growth factor signaling. Front Neuroendocrinol. 2012; 33(3): 230-51. doi:10.1016/j.yfrne.2012.06.002 PMID: 22710100 PMCID: PMC3677055
7. Carro E, Trejo JL, Gomez-Isla T, LeRoith D, Torres-Aleman I. Serum insulin-like growth factor I regulates brain amyloid-β levels. Nat Med. 2002; 8(12): 1390-7. doi:10.1038/nm1202-793 PMID: 12415260
8. Farooqui T. Review of octopamine in insect nervous systems. Open Access Insect Physiol. 2012; 4 1-17. doi:10.2147/OAIP.S20911
9. 9. Burchett SA, Hicks TP. The mysterious trace amines: protean neuromodulators of synaptic transmission in mammalian brain. Prog Neurobiol. 2006; 79(5-6): 223-46. doi:10.1016/j.pneurobio.2006.07.003 PMID: 16962229
10. Dhakal S, Macreadie I. Potential contributions of trace amines in Alzheimer's disease and therapeutic prospects. Neural Regen Res. 2021; 16(7):1394. doi:10.4103/1673-5374.300985 PMID: 33318424 PMCID: PMC8284261
11. Sherer LM, Catudio Garrett E, Morgan HR, Brewer ED, Sirrs LA, Shearin HK, et al. Octopamine neuron dependent aggression requires dVGLUT from dual-transmitting neurons. PLoS Genet. 2020; 16(2):e1008609. doi:10.1371/journal.pgen.1008609 PMID: 32097408 PMCID: PMC7059954
12. D'Andrea G, Nordera G, Pizzolato G, Bolner A, Colavito D, Flaibani R, et al. Trace amine metabolism in Parkinson's disease: low circulating levels of octopamine in early disease stages. Neurosci Lett. 2010; 469(3): 348-51. doi: 10.1016/j.neulet.2009.12.025 PMID: 20026245
13. Chang SS, Cheng JT. Inhibitory effect of octopamine on the release of endogenous acetylcholine from isolated myenteric synaptosomes of guinea‐pig. Clin Exp Pharmacol Physiol. 1993; 20(11): 713-21. doi:10.1111/j.1440-1681.1993.tb01656.x PMID: 7508351
14. Farzanegi P, Kheirandish PM. Moradi L. Effect of aerobic training and octopamine on the gene expression of LAMP2A, Parkin and concentration OF SOD in liver of male rats fed with repeated heated oil. Razi J Med Sci. 2021; 28(2):1-10.
15. Nameni F, Falahi S. Simultaneous Effect of Interval Training and Octopamine Extract on NLRP-1 and NLRP-3 in Brain Tissue of Alzheimer's Rats. Jorjani Biomed J. 2021; 9(3): 24-32
16. Dezhan M, Azarbayjani MA, Peeri M. Effect of aerobic and octopamine supplementation on the expression of ACC and ACYL genes and HDL / LDL ratio in visceral visceral adipose tissue of DFO recipient. Razi J Med Sci. 2020; 27(7):109-19.
17. Stohs SJ, Shara M, Ray SD. p‐Synephrine, ephedrine, p‐octopamine and m‐synephrine: Comparative mechanistic, physiological and pharmacological properties. Phytother Res. 2020; 34(8): 1838-46. doi:10.1002/ptr.6649 PMID: 32101364 PMCID: PMC7496387
18. Kianmehr P, Azarbayjani MA, Peeri M, Farzanegi P. Synergic effects of exercise training and octopamine on peroxisome proliferator-activated receptor-gamma coactivator-1a and uncoupling protein 1 mRNA in heart tissue of rat treated with deep frying oil. Biochem Biophys Rep. 2020; 22:100735. doi:10.1016/j.bbrep.2020.100735 PMID: 32140572 PMCID: PMC7047140
19. Mahmudi R, Azarbayjani MA, Peeri M, Farzanegi P. Effects of Training and Octopamine Supplementation on Expression of M1 and M2 Monocyte/Macrophage Surface Markers in White Adipose Tissue of Rats Poisoned with Deep-Fried Oil. Gene Cell Tissue. 2020; 7(1). doi:10.5812/gct.100036
20. Ghobeh M, Ahmadian S, Meratan AA, Ebrahim‐Habibi A, Ghasemi A, Shafizadeh M, Nemat‐Gorgani M. Interaction of Aβ (25-35) fibrillation products with mitochondria: Effect of small‐molecule natural products. Peptide Sci. 2014; 102(6): 473-86. doi: https://doi.org/10.1002/ bip.22572
21. Eslimi Esfehani D, Oryan SH, Khosravi M, Valizadegan F. Effect of fennel extract on the improvement of memory disorders in beta amyloid alzheimer model of male wistar rats. Sci J Ilam Univ Med Sci. 2019; 27(1):1-12. doi:10.29252/sjimu.27.1.1
22. Hosseinzadeh S, Dabidi Roshan V, Pourasghar M. Effects of intermittent aerobic training on passive avoidance test (shuttle box) and stress markers in the dorsal hippocampus of wistar rats exposed to administration of homocysteine. Iran J Psychiatry Behav Sci. 2013; 7(1):37-44. PMID: 24644498; PMCID: PMC3939978
23. Khooshe-Bast Z, Sahebzadeh N, Tahmasbi G, Haddadi M, Khani A. Effects of octopamine on memory retention under chemical stress: a behavioral study on honey bees. J Apicultural Res. 2023; 63(1): 76-87
24. Behrends A, Scheiner R. Octopamine improves learning in newly emerged bees but not in old foragers. J Exp Biol. 2012; 215(Pt 7): 1076-83. doi:10.1242/jeb.063297. PMID: 22399652
25. Sabandal JM, Sabandal PR, Kim YC, Han KA. Concerted Actions of Octopamine and Dopamine Receptors Drive Olfactory Learning. J Neurosci. 2020; 40 (21): 4240-50. doi:10.1523/JNEUROSCI.1756-19.2020. PMC 7244198. PMID 32277043
26. Ghashghaei S, Ghobeh M, Yaghmaei P. The effect of nerol on behavioral, biochemical and histological parameters in male Wistar Alzheimer's rats. Biomacromolecula J. 2019; 5(1): 12-22.
27. Hamaguchi T, Ono K, Murase A, Yamada M. Phenolic compounds prevent Alzheimer's pathology through different effects on the amyloid-beta aggregation pathway. Am J Pathol. 2009; 175(6): 2557-65. doi:10.2353/ajpath.2009.090417. PMID: 19893028; PMCID: PMC2789642
28. Shum A, Zaichick S, McElroy GS, D'Alessandro K, Alasady MJ, Novakovic M, et al. Octopamine metabolically reprograms astrocytes to confer neuroprotection against α-synuclein. Proc Natl Acad Sci USA. 2023; 120(17):e2217396120. doi:10.1073/pnas.2217396120. PMID: 37068235 PMCID: PMC10151466
29. Jankowska M, Rogalska J, Wyszkowska J, Stankiewicz M. Molecular targets for components of essential oils in the insect nervous system-A review. Molecules. 2017; 23(1):34. doi:10.3390/molecules23010034 PMID: 29295521 PMCID: PMC5943938
30. Seifi Nahavandi B, Yaghmaee P, Ahmadian S, Ghobeh M, Ebrahim-Habibi A. The Effects of Geraniol and Exercise on Memory and Learning in Male NMRI Alzheimer's Rats. J Animal Bio . 2021; 14(1):183-93. doi: 10.22034/ascij.2021.684788.
31. Nikpour Sardehaee A, Farzanegi P, Farzaneh Hesari A. Effect of aerobic training and octopamine on the gene expression of mitochondrial fission and fusion markers in soleus muscle of male rats fed with repeated heated oil. Razi J Medic Sci. 2021; 29(1):0-0. doi: http://rjms.iums.ac.ir
32. Ziaie BT, Peeri M, Azarbayjani MA. The Effect of Aerobic Exercise and Octopamine on the Expression of Serotonergic, Adrenergic, and Dopaminergic Pathways in the Cerebellum of Deep-Frying Oil-Treated Rats. Neurosci J Shefaye Khatam. 2022; 10(2): 46-56. doi:10.61186/shefa.10.2.46
33. Asmar A, Azarbayjani MA, Peeri M. The effect of endurance training and octopamine supplements on glutathione peroxidase and protein carbonyl in cerebellum tissue of rats fed by DFO. Razi J Medic Sci. 2022; 29(6):0-0.
34. Nandi A, Yan LJ, Jana CK, Das N. Role of catalase in oxidative stress‐and age‐associated degenerative diseases. Oxid Med Cell longev. 2019; 2019(1): 9613090. doi:10.1155/2019/9613090
35. Habib LK, Lee MT, Yang J. Inhibitors of catalase-amyloid interactions protect cells from beta-amyloid-induced oxidative stress and toxicity. J Biol Chem. 2010; 285(50): 38933-43. doi: 10.1074/jbc.M110.132860. PMID: 2092 3778 PMCID: PMC2998107
36. Llorens-Martín M, Torres-Alemán I, Trejo JL. Exercise modulates insulin-like growth factor 1-dependent and -independent effects on adult hippocampal neurogenesis and behaviour. Mol Cell Neurosci. 2010; 44(2):109-17. doi: 10.1016/j.mcn.2010.02.006. PMID: 20206269
37. Lee E, Son H. Adult hippocampal neurogenesis and related neurotrophic factors. BMB Rep 2009; 42(5): 239-44.doi:10.5483/bmbrep.2009.42.5.239. PMID: 19470236
38. Hong M, Lee VM. Insulin and insulin-like growth factor-1 regulate tau phosphorylation in cultured human neurons. J Biol Chem. 1997; 272(31):19547-53. doi: 10.1074/jbc.272.31.19547. PMID: 9235959
39. Mustafa A, Lannfelt L, Lilius L, Islam A, Winblad B, Adem A. Decreased plasma insulin-like growth factor-I level in familial Alzheimer's disease patients carrying the Swedish APP 670/671 mutation. Dement Geriatr Cogn Disord. 1999; 10(6):446-51. doi: 10.1159/000017188. PMID: 10559558
40. Kalmijn S, Janssen JA, Pols HA, Lamberts SW, Breteler MM. A prospective study on circulating insulin-like growth factor I (IGF-I), IGF-binding proteins, and cognitive function in the elderly. J Clin Endocrinol Metab. 2000; 85(12):4551-5. doi: 10.1210/jcem.85.12.7033. PMID: 11134107
41. Al-Delaimy WK, von Muhlen D, Barrett-Connor E. Insulinlike growth factor-1, insulinlike growth factor binding protein-1, and cognitive function in older men and women. J Am Geriatr Soc. 2009; 57(8): 1441-6. doi: 10.1111/j.1532-5415.2009.02343.x. PMID: 19515112 PMCID: PMC2728156.
42. Dik MG, Pluijm SM, Jonker C, Deeg DJ, Lomecky MZ, Lips P. Insulin-like growth factor I (IGF-I) and cognitive decline in older persons. Neurobiol Aging. 2003; 24(4): 573-81. doi: 10.1016/s0197-4580(02)00136-7. PMID: 12714114.
43. Narimatsu N, Harada N, Kurihara H, Nakagata N, Sobue K, Okajima K. Donepezil improves cognitive function in mice by increasing the production of insulin-like growth factor-I in the hippocampus. J Pharmacol Exp Ther. 2009; 330(1):2-12. doi: 10.1124/jpet.108.147280. PMID: 19318594.
44. Lee E, Son H. Adult hippocampal neurogenesis and related neurotrophic factors. BMB Rep. 2009; 42(5):239-44. doi: 10.5483/bmbrep.2009.42.5.239. PMID: 19470236
45. Khawaja X, Xu J, Liang JJ, Barrett JE. Proteomic analysis of protein changes developing in rat hippocampus after chronic antidepressant treatment: Implications for depressive disorders and future therapies. J Neurosci Res. 2004; 75(4):451-60. doi: 10.1002/jnr.10869. PMID: 14743428
46. Chainoglou E, Hadjipavlou-Litina D. Curcumin in Health and Diseases: Alzheimer's Disease and Curcumin Analogues, Derivatives, and Hybrids. Int J Mol Sci. 2020; 21(6):1975. doi: 10.3390/ijms21061975. PMID: 32183162 PMCID: PMC7139886
47. Yanagisawa D, Taguchi H, Morikawa S, Kato T, Hirao K, Shirai N, et al. Novel curcumin derivatives as potent inhibitors of amyloid β aggregation. Biochem Biophys Rep. 2015; 4:357-368. doi: 10.1016/j.bbrep.2015.10.009. PMID: 29124225 PMCID: PMC5669405
48. Zhai P, Xia CL, Tan JH, Li D, Ou TM, Huang SL, et al. Syntheses and Evaluation of Asymmetric Curcumin Analogues As Potential Multifunctional Agents For The Treatment Of Alzheimer's Disease. Curr Alzheimer Res 2015; 12(5): 403-14. doi: 10.2174/1567205012666150504151120. PMID: 25938868
49. Liu Z, Fang L, Zhang H, Gou S, Chen L. Design, synthesis and biological evaluation of multifunctional tacrine-curcumin hybrids as new cholinesterase inhibitors with metal ions-chelating and neuroprotective property. Bioorg Med Chem. 2017; 25(8): 2387-98. doi: 10.1016/j.bmc.2017.02.049. PMID: 28302511
50. Bukhari SN, Jantan I, Masand VH, Mahajan DT, Sher M, Naeem-ul-Hassan M, Amjad MW. Synthesis of α, β-unsaturated carbonyl based compounds as acetylcholinesterase and butyrylcholinesterase inhibitors: characterization, molecular modeling, QSAR studies and effect against amyloid β-induced cytotoxicity. Eur J Med Chem. 2014; 83:355-65. doi: 10.1016/j.ejmech.2014.06.034. PMID: 24980117
ارسال پیام به نویسنده مسئول

ارسال نظر درباره این مقاله
نام کاربری یا پست الکترونیک شما:

CAPTCHA



XML   English Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mohaghegh N, Ghobeh M, Kianmehr Z. Effect of Octapamine on Insulin-Like Growth Factor-1 Receptor (IGF1R) and Cell Death Rate in the Hippocampus of Alzheimer’s Wistar Rats. Feyz Med Sci J 2024; 28 (4) :353-363
URL: http://feyz.kaums.ac.ir/article-1-5104-fa.html

محقق نسیبه، قبه مریم، کیان مهر زهرا. تاثیر اکتاپامین بر گیرنده انسولینی IGF1R و میزان مرگ سلولی در هیپوکامپ رت‌های آلزایمری شده نژاد ویستار. مجله علوم پزشکی فيض. 1403; 28 (4) :353-363

URL: http://feyz.kaums.ac.ir/article-1-5104-fa.html



Creative Commons License
This open access journal is licensed under a Creative Commons Attribution-NonCommercial ۴.۰ International License. CC BY-NC ۴. Design and publishing by Kashan University of Medical Sciences.
Copyright ۲۰۲۳© Feyz Medical Sciences Journal. All rights reserved.
دوره 28، شماره 4 - ( دوماه نامه 1403 ) برگشت به فهرست نسخه ها
مجله علوم پزشکی فیض Feyz Medical Sciences Journal
Persian site map - English site map - Created in 0.08 seconds with 46 queries by YEKTAWEB 4660