[صفحه اصلی ]   [Archive] [ English ]  
:: صفحه اصلي :: درباره مجله :: شماره جاری :: تمام شماره‌ها :: جستجو :: ثبت نام :: ارسال مقاله :: تماس با ما ::
بخش‌های اصلی
صفحه اصلی::
اطلاعات نشریه::
بانک‌ها و نمایه‌ها::
آرشیو مجله و مقالات::
برای نویسندگان::
اخلاق در پژوهش::
برای داوران::
تسهیلات پایگاه::
تماس با ما::
::
Basic and Clinical Biochemistry and Nutrition
..
DOAJ
..
CINAHL
..
EBSCO
..
IMEMR
..
ISC
..
جستجو در پایگاه

جستجوی پیشرفته
..
دریافت اطلاعات پایگاه
نشانی پست الکترونیک خود را برای دریافت اطلاعات و اخبار پایگاه، در کادر زیر وارد کنید.
..
enamad
..
:: دوره 27، شماره 1 - ( دوماه نامه 1402 ) ::
جلد 27 شماره 1 صفحات 30-21 برگشت به فهرست نسخه ها
تهیه نانوساختار نیوزومی حاوی ایمنوژن سه‌ظرفیتی بروسلا به‌عنوان کاندیدای واکسن
فهیمه شریف ، راضیه نظری ، مهدی فصیحی رامندی ، رمضانعلی طاهری ، محسن زرگر
مرکز تحقیقات بیولوژی مولکولی، دانشگاه علوم پزشکی بقیه الله، تهران، ایران ، fasihi.m@gmail.com
چکیده:   (602 مشاهده)
سابقه و هدف: بروسلوزیس جزو شایع‌ترین بیماری‌های مشترک بین انسان و دام است. از این‌رو، پیشگیری و تولید واکسن کارآمد لازم و ضروری است. هدف مطالعه حاضر تهیه نانوساختار نیوزومی حاوی ایمنوژن سه‌ظرفیتی (TF، Bp26  و Omp31) بروسلا به‌عنوان کاندیدای نانوواکسن می‌باشد.
مواد و روش‌ها: در این مطالعه پس از طراحی سازه ایمنوژن توسط پایگاه‌ها و نرم‌افزارهای بیوانفورماتیکی، به‌منظور ارزیابی ایمنی‌زایی پروتئین نوترکیب طراحی‌شده، کلون و بیان ژن در Escherichia coli BL21  انجام پذیرفت. پروتئین استخراج‌شده از کشت سلول‌های مذکور توسط ستون Ni-NTA مورد تخلیص قرار گرفت. برای تهیه نیوزوم‌های حامل ایمنوژن سه‌ظرفیتی، روش آبپوشانی لایه نازک به‌کار گرفته شد و با استفاده از آزمون‌های مشخصه‌یابی ‌DLS و Zetasizer مورد ارزیابی قرار گرفت. سپس میزان لود و رهایش ایمنوژن سه‌ظرفیتی محاسبه شد.
نتایج: نتایج حاصل از مشخصه‌یابی، ساخت موفق نانوسامانه نیوزومی حاوی ایمنوژن سه‌ظرفیتی را تأیید کرد. نتایج نشان داد که نیوزوم‌های تولیدشده در محدوده مناسبی از اندازه (‌100 نانومتر) قرار دارند. ایمنوژن سه‌ظرفیتی با راندمان بالایی (81/96 درصد) در سامانه، کپسوله شده است. رهایش ایمنوژن سه‌ظرفیتی از نانوسامانه نیوزومی بعد از 96 ساعت 97 درصد گزارش شد؛ علاوه‌براین الگوی رهایش ایمنوژن سه‌ظرفیتی سامانه پوشش‌دهی‌شده، کنترل‌شده‌تر و آهسته‌تر بود که این موضوع تأثیر مثبت نانوسامانه نیوزومی را تأیید می‌کند.
نتیجه‌گیری: استفاده از نیوزوم به‌عنوان عامل نانوواکسن نقش مؤثری در کنترل رهایش آنتی‌ژن دارد و می‌تواند به‌عنوان کاندیدای واکسن و افزایش پاسخ ایمنی حفاظتی علیه بروسلا مطرح باشد.
واژه‌های کلیدی: بروسلا، واکسن، نانوساختار، نیوزوم، TF، Bp26، Omp31
متن کامل [PDF 427 kb]   (290 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: medicine, paraclinic
دریافت: 1401/9/28 | ویرایش نهایی: 1402/5/3 | پذیرش: 1401/10/25 | انتشار: 1402/1/16
فهرست منابع
1. Avijgan M, Rostamnezhad M, Jahanbani-Ardakani H. Clinical and serological approach to patients with brucellosis: A common diagnostic dilemma and a worldwide perspective. Microb Pathog 2019;129:125-30.
2. Chaudhuri P, Saminathan M, Ali SA, Kaur G, Singh SV, Lalsiamthara J, et al. Immunization with Brucella abortus S19Δper Conferred Protection in Water Buffaloes against Virulent Challenge with B. abortus Strain S544. Vaccines 2021; 9(12): 1423.
3. Jawetz M. Medical Microbiology 27 edition: Lange; 2016.
4. Murray PR, Rosenthal KS, Pfaller MA. Medical microbiology E-book: Elsevier Health Sciences; 2020.
5. Gomez G, Adams LG, Ficht AR, Ficht TA. Host-Brucella interactions and the Brucella genome as tools for subunit antigen discovery and immunization against brucellosis. Frontiers Cell Infect Microb 2013; 3: 17.
6. Kumar DR, Sivalingam J, Mishra SK, Kumar A, Vineeth M, Chaudhuri P, et al. Differential expression of cytokines in PBMC of Bos indicus and Bos taurus× Bos indicus cattle due to Brucella abortus S19 antigen. Animal Biotech 2020; 31(2): 148-54.
7. Atabey T, Acar T, Derman S, Ordu E, Erdemir A, Taşlı PN, et al. In Vitro Evaluation of Immunogenicity of Recombinant OMP25 Protein Obtained from Endemic Brucella abortus Biovar 3 as Vaccine Candidate Molecule Against Animal Brucellosis. Protein Peptide Lett 2021; 28(10): 1138-47.
8. Abkar M, Fasihi-Ramandi M, Kooshki H, Lotfi AS. Oral immunization of mice with Omp31-loaded N-trimethyl chitosan nanoparticles induces high protection against Brucella melitensis infection. Int J Nano. 2017;12:8769.
9. Abdollahi A, Mansouri S, Amani J, Fasihi-Ramandi M, Ranjbar R, Ghasemi A, et al. A Recombinant Chimera Protein as a Novel Brucella Subunit Vaccine: Protective Efficacy and Induced Immune Response in BALB/c Mice. Jundishapur J Microbiol 2018; 11(1): 1-9. [in Persian]
10. Gopalakrishnan A, Dimri U, Saminathan M, Yatoo M, Priya GB, Gopinath D, et al. Virulence factors, intracellular survivability and mechanism of evasion from host immune response by brucella: an overview. J Animal Plant Sci 2016; 26(6).
11. Abkar M, Alamian S, Sattarahmady N. A comparison between adjuvant and delivering functions of calcium phosphate, aluminum hydroxide and chitosan nanoparticles, using a model protein of Brucella melitensis Omp31. Immunol Lett 2019; 207: 28-35.
12. Moghassemi S, Hadjizadeh A. Nano-niosomes as nanoscale drug delivery systems: an illustrated review. J Controlled Release 2014; 185: 22-36.
13. Hasan AA, Madkor H, Wageh S. Formulation and evaluation of metformin hydrochloride-loaded niosomes as controlled release drug delivery system. Drug Delivery 2013; 20(3-4): 120-6.
14. Bagheri-Josheghani S, Bakhshi B. Formulation of selenium nanoparticles encapsulated by alginate-chitosan for controlled delivery of Vibrio Cholerae LPS: A novel delivery system candidate for nanovaccine. Int J Biol Macromol 2022; 208: 494-508.
15. Fasihi-Ramandi M, Ghobadi-Ghadikolaee H, Ahmadi-Renani S, Taheri RA, Ahmadi K. Vibrio cholerae lipopolysaccharide loaded chitosan nanoparticle could save life by induction of specific immunoglobulin isotype. Artif Cells Nanomed Biotechnol 2018; 46(1): 56-61.
16. Sekhavati MH, Heravi RM, Tahmoorespur M, Yousefi S, Abbassi-Daloii T, Akbari R. Cloning, molecular analysis and epitopics prediction of a new chaperone GroEL Brucella melitensis antigen. Iran J Basic Med Sci 2015; 18(5): 499.
17. Díaz AG, Clausse M, Paolicchi FA, Fiorentino MA, Ghersi G, Zylberman V, et al. Immune response and serum bactericidal activity against Brucella ovis elicited using a short immunization schedule with the polymeric antigen BLSOmp31 in rams. Vet Immunol Immunopathol 2013; 154(1-2): 36-41.
18. Abkar M, Lotfi A, Amani J, Ghorashi S, Brujeni G, Kamali M. Design of a chimeric DNA vaccine against Brucella spp. Minerva Biotec 2014; 26(4): 223-33.
19. Ghasemi A, Ranjbar R, Amani J. In silico analysis of chimeric TF, Omp31 and BP26 fragments of Brucella melitensis for development of a multi subunit vaccine candidate. Iran J Basic Med Sci 2014; 17(3): 172.
20. Ahmed IM, Khairani-Bejo S, Hassan L, Bahaman AR, Omar AR. Serological diagnostic potential of recombinant outer membrane proteins (rOMPs) from Brucella melitensis in mouse model using indirect enzyme-linked immunosorbent assay. BMC Vet Res 2015; 11(1): 1-0.
21. Pakzad I, Rezaee A, Rasaee MJ, Hossieni AZ, Tabbaraee B, Kazemnejad A. Protection of BALB/C mice against Brucella abortus 544 challenge by vaccination with combination of recombinant human serum albumin-l7/l12 (Brucella abortus ribosomal protein) and lipopolysaccharide. Romanian Arch 2010: 5.
22. Khan S, Akhtar MU, Khan S, Javed F, Khan AA. Nanoniosome‐encapsulated levoflaxicin as an antibacterial agent against Brucella. J Basic Microbiol 2020; 60(3): 281-90.
23. Mukherjee F, Prasad A, Bahekar VS, Rana SK, Rajendra L, Sharma GK, Srinivasan VA. Evaluation of immunogenicity and protective efficacy of a liposome containing Brucella abortus S19 outer membrane protein in BALB/c mice. Iran J Vet Res 2016; 17(1): 1.
24. Amiri B, Ebrahimi-Far M, Saffari Z, Akbarzadeh A, Soleimani E, Chiani M. Preparation, characterization and cytotoxicity of silibinin-containing nanoniosomes in T47D human breast carcinoma cells. Asian Pac J Cancer Prev 2016; 17(8): 3835-8. [in Persian]
25. Taymouri S, Varshosaz J. Effect of different types of surfactants on the physical properties and stability of carvedilol nano-niosomes. Adv Biomed Res 2016; 5.
26. Amoabediny G, Haghiralsadat F, Naderinezhad S, Helder MN, Akhoundi Kharanaghi E, Mohammadnejad Arough J, Zandieh-Doulabi B. Overview of preparation methods of polymeric and lipid-based (niosome, solid lipid, liposome) nanoparticles: A comprehensive review. Int J Polym Mater 2018 ; 67(6): 383-400.
ارسال پیام به نویسنده مسئول

ارسال نظر درباره این مقاله
نام کاربری یا پست الکترونیک شما:

CAPTCHA



XML   English Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Sharif F, Nazari R, Fasihi-Ramandi M, Taheri R A, Zargar M. Preparation of niosomal nanostructure containing Brucella trivalent immunogen as a vaccine candidate. Feyz 2023; 27 (1) :21-30
URL: http://feyz.kaums.ac.ir/article-1-4770-fa.html

شریف فهیمه، نظری راضیه، فصیحی رامندی مهدی، طاهری رمضانعلی، زرگر محسن. تهیه نانوساختار نیوزومی حاوی ایمنوژن سه‌ظرفیتی بروسلا به‌عنوان کاندیدای واکسن. مجله علوم پزشکی فيض. 1402; 27 (1) :21-30

URL: http://feyz.kaums.ac.ir/article-1-4770-fa.html



Creative Commons License
This open access journal is licensed under a Creative Commons Attribution-NonCommercial ۴.۰ International License. CC BY-NC ۴. Design and publishing by Kashan University of Medical Sciences.
Copyright ۲۰۲۳© Feyz Medical Sciences Journal. All rights reserved.
دوره 27، شماره 1 - ( دوماه نامه 1402 ) برگشت به فهرست نسخه ها
مجله علوم پزشکی فیض Feyz Medical Sciences Journal
Persian site map - English site map - Created in 0.05 seconds with 46 queries by YEKTAWEB 4645