:: Volume 26, Issue 6 (Bimonthly 2022) ::
Feyz 2022, 26(6): 722-738 Back to browse issues page
Study of genes and mutations spectrum causing non-syndromic hearing loss in Iran: A review study
Mobarakeh Ajam-Hossieni , Farshid Parvini , Abdolhamid Angaji
Department of Biology, Faculty of Basic Sciences, Semnan University, Semnan, I.R. Iran. , f.parvini@semnan.ac.ir
Abstract:   (1254 Views)
Background: Hearing loss (HL) is known as the most common sensorineural disorder. The frequency of hearing impairment is one in every 500 infants born, worldwide. In Iran, due to the high prevalence of consanguineous marriages, this amount is estimated to be two to three times higher. The high locus and allelic heterogeneity of hereditary hearing loss in different populations of Iran and distribution of studies are the main reasons for conducting this review.
Materials and Methods: Published articles were collected and reviewed in Google scholar, Scopus, Web of Science and PubMed databases from 1989 to 2022 based on the keywords of Iran, non-syndromic, hearing loss, gene, mutation and pathogenic variants.
Results: So far, more than 130 genes causing non-syndromic hearing loss (NSHL) have been known in the world, of which 57 genes including 430 pathogenic and likely pathogenic mutations have been reported in NSHL patients in Iran. Based on the literature, GJB2, SLC26A4, MYO15A, MYO7A, CDH23, and TMC1 genes are among the most common causes of NSHL in Iran, respectively, and their distribution is different in various populations. In addition, missense mutation is the most common reported mutation.
Conclusion: This study while confirming the high genetic heterogeneity of NSHL in Iran, emphasizes the importance and revolutionary impact of next generation sequencing (NGS) techniques in diagnosing the genetic cause of hearing impairment in different populations of Iran. Such an approach can play a significant role in genetic counseling, prenatal diagnosis and clinical management of hearing impairment in affected families.
Keywords: Hearing impairment, Sensorineural hearing loss, Genetics of deafness, Genetic heterogeneity, Nonsyndromic hearing loss
Full-Text [PDF 487 kb]   (734 Downloads)    
Type of Study: Review | Subject: medicine, paraclinic
Received: 2022/08/26 | Revised: 2023/03/4 | Accepted: 2022/12/18 | Published: 2023/02/22
1. Trpchevska N, Freidin MB, Broer L, Oosterloo BC, Yao S, Zhou Y, et al. Genome-wide association meta-analysis identifies 48 risk variants and highlights the role of the stria vascularis in hearing loss. Am J Hum Genet 2022; 109(6): 1077–91.
2. Vona B, Doll J, Hofrichter MAH, Haaf T. Non-syndromic hearing loss: clinical and diagnostic challenges. Medizinische Genet 2020; 26; 32(2): 117–29.
3. Hegde S, Hegde R, Kulkarni SS, Das KK, Gai PB, Bulagouda RS. Analysis of Genetic Variations in Connexin 26 (GJB2) Gene among Nonsyndromic Hearing Impairment: Familial Study. Glob Med Genet 2022; 09(02): 152–8.
4. Kalra G. Multi-Omic Analysis of Hearing Difficulty Risk Loci and Gene Regulatory Networks in the Mammalian Cochlea. [Dissertation] Baltimore. Molecular Medicine University of Maryland. 2021.
5. Roizen NJ. Etiology of hearing loss in children: nongenetic causes. Pediatr Clin N Am 1999; 46(1): 49-64
6. Dobriyanova V. Acquired hearing loss. Int Bulletin Otorhinolaryngol 2020; 22; 16(3): 5-8.
7. Roizen NJ. Nongenetic causes of hearing loss. Ment Retard Dev Disabil Res Rev 2003; 9(2): 120–7.
8. Cohen BE, Durstenfeld A, Roehm PC. Viral Causes of Hearing Loss: A Review for Hearing Health Professionals. Trends Hear 2014; 17; 18: 233121651454136.
9. Sadighi J, Eftekhar H, Mohammad K. Congenital rubella syndrome in Iran. BMC Infect Dis 2005; 5(1): 44.
10. Lee JY, Bowden DS. Rubella virus replication and links to teratogenicity. Clin Microbiol Rev 2000; 13(4): 571-87.
11. Maroonroge S, Emanuel DC, Letowski TR. Basic anatomy of the hearing system. Helmet-Mounted Displays: Sensation, Perception and Cognition Issues. US Army Aeromedical Research (Alabama) 2000. p. 279-306.
12. Brownell WE. How the ear works-nature’s solutions for listening. Volta Rev 1997; 99(5): 9.
13. Dror AA, Avraham KB. Hearing Impairment: A Panoply of Genes and Functions. Neuron 2010; 68(2): 293–308.
14. Willems PJ. Genetic Causes of Hearing Loss. Epstein FH, editor. N Engl J Med 2000; 342(15): 1101–9.
15. Dror AA, Avraham KB. Hearing Loss: Mechanisms Revealed by Genetics and Cell Biology. Annu Rev Genet 2009; 43(1): 411–37.
16. Hudspeth AJ. How the ear’s works work. Nature 1989; 341(6241): 397–404.
17. Venkatesh MD, Moorchung N, Puri B. Genetics of non syndromic hearing loss. Med J Armed Forces India 201; 71(4): 363–8.
18. Kahrizi K, Bazazzadegan N, Jamali L, Nikzat N, Kashef A, Najmabadi H. A novel mutation of the USH2C (GPR98) gene in an Iranian family with Usher syndrome type II. J Genet 2014; 13; 93(3): 837–41.
19. Noavar S, Behroozi S, Tatarcheh T, Parvini F, Foroutan M, Fahimi H. A novel homozygous frame-shift mutation in the SLC29A3 gene: a new case report and review of literature. BMC Med Genet 2019; 20(1): 147.
20. Koohiyan M, Noori-Daloii MR, Hashemzadeh-Chaleshtori M, Salehi M, Abtahi H, Tabatabaiefar MA. A Novel Pathogenic Variant in the CABP2 Gene Causes Severe Nonsyndromic Hearing Loss in a Consanguineous Iranian Family. Audiol Neurotol 2019; 24(5): 258–63.
21. Yan D, Tekin D, Bademci G, Foster J, Cengiz FB, Kannan-Sundhari A, et al. Spectrum of DNA variants for non-syndromic deafness in a large cohort from multiple continents. Hum Genet 2016; 135(8): 953–61.
22. Fahimi H, Behroozi S, Noavar S, Parvini F. A novel recessive PDZD7 bi-allelic mutation in an Iranian family with non-syndromic hearing loss. BMC Med Genomics 2021; 14(1): 37.
23. Ma Y, Wise AK, Shepherd RK, Richardson RT. New molecular therapies for the treatment of hearing loss. Pharmacol Ther 2019; 200: 190–209.
24. Kuhn S, Johnson SL, Furness DN, Chen J, Ingham N, Hilton JM, et al. miR-96 regulates the progression of differentiation in mammalian cochlear inner and outer hair cells. Proc Natl Acad Sci 2011; 108(6): 2355–60.
25. Li M, Mei L, He C, Chen H, Cai X, Liu Y, et al. Extrusion pump ABCC1 was first linked with nonsyndromic hearing loss in humans by stepwise genetic analysis. Genet Med 2019; 21(12): 2744–54.
26. Wesdorp M, Murillo-Cuesta S, Peters T, Celaya AM, Oonk A, Schraders M, et al. MPZL2, Encoding the Epithelial Junctional Protein Myelin Protein Zero-like 2, Is Essential for Hearing in Man and Mouse. Am J Hum Genet 2018; 103(1): 74–88.
27. Zhu M, Yang T, Wei S, DeWan AT, Morell RJ, Elfenbein JL, et al. Mutations in the γ-Actin Gene (ACTG1) Are Associated with Dominant Progressive Deafness (DFNA20/26). Am J Hum Genet. 2003;73(5):1082–91.
28. Koohiyan M, Hoseini M, Azadegan-Dehkordi F. An update on autosomal recessive hearing loss and loci involved in it. Indian J Otol 2022; 28(1): 6.
29. Barbarino JM, McGregor TL, Altman RB, Klein TE. PharmGKB summary. Pharmacogenet Genomics 2016; 26(12): 558–67.
30. Zong L, Guan J, Ealy M, Zhang Q, Wang D, Wang H, et al. Mutations in apoptosis-inducing factor cause X-linked recessive auditory neuropathy spectrum disorder. J Med Genet 2015; 52(8): 523–31.
31. Chen D, Zhu W, Chai Y, Chen Y, Sun L, Yang T, et al. Mutation in PCDH15 may modify the phenotypic expression of the 7511T>C mutation in MT-TS1 in a Chinese Han family with maternally inherited nonsyndromic hearing loss. Int J Pediatr Otorhinolaryngol 2015; 79(10): 1654–7.
32. Smits JJ, Oostrik J, Beynon AJ, Kant SG, de Koning Gans PAM, Rotteveel LJC, et al. De novo and inherited loss-of-function variants of ATP2B2 are associated with rapidly progressive hearing impairment. Hum Genet 2019; 138(1): 61–72.
33. Kim SJ, Lee S, Park HJ, Kang TH, Sagong B, Baek JI, et al. Genetic association of MYH genes with hereditary hearing loss in Korea. Gene 2016; 591(1): 177–82.
34. Cirilo JA, Gunther LK, Yengo CM. Functional Role of Class III Myosins in Hair Cells. Front Cell Dev Biol. 2021; 25;9:1–13.
35. Modamio-Høybjør S, Mencía Á, Goodyear R, del Castillo I, Richardson G, Moreno F, et al. A Mutation in CCDC50, a Gene Encoding an Effector of Epidermal Growth Factor–Mediated Cell Signaling, Causes Progressive Hearing Loss. Am J Hum Genet 2007; 80(6): 1076–89.
36. Nyegaard M, Rendtorff ND, Nielsen MS, Corydon TJ, Demontis D, Starnawska A, et al. A Novel Locus Harbouring a Functional CD164 Nonsense Mutation Identified in a Large Danish Family with Nonsyndromic Hearing Impairment. Lesperance M, editor. PLOS Genet 2015;; 11(7): e1005386.
37. Mohseni M, Akbari M, Booth KT, Babanejad M, Azaiez H, Ardalani F, et al. When transcripts matter: delineating between non-syndromic hearing loss DFNB32 and hearing impairment infertile male syndrome (HIIMS). J Hum Genet 2020; 65(7): 609–17.
38. Nakanishi H, Kawashima Y, Kurima K, Muskett JA, Kim HJ, Brewer CC, et al. Gradual Symmetric Progression of DFNA34 Hearing Loss Caused by an NLRP3 Mutation and Cochlear Autoinflammation. Otol Neurotol 2018; 39(3): e181–5.
39. Zhang D, Wu J, Yuan Y, Li X, Gao X, Han M, et al. A novel missense variant in CEACAM16 gene causes autosomal dominant nonsyndromic hearing loss. Ann Hum Genet 2022; 86(4): 207–17.
40. Wang H, Lin C, Yao J, Shi H, Zhang C, Wei Q, et al. Deletion of OSBPL2 in auditory cells increases cholesterol biosynthesis and drives reactive oxygen species production by inhibiting AMPK activity. Cell Death Dis 2019; 10(9): 627.
41. Sineni CJ, Yildirim-Baylan M, Guo S, Camarena V, Wang G, Tokgoz-Yilmaz S, et al. A truncating CLDN9 variant is associated with autosomal recessive nonsyndromic hearing loss. Hum Genet 2019; 138(10): 1071–5.
42. JanssensdeVarebeke SPF, Van Camp G, Peeters N, Elinck E, Widdershoven J, Cox T, et al. Bi-allelic inactivating variants in the COCH gene cause autosomal recessive prelingual hearing impairment. Eur J Hum Genet 2018; 26(4): 587–91.
43. Chen X, Abad C, Chen Z, Young JI, Gurumurthy CB, Walz K, et al. Generation and characterization of a P2rx2 V60L mouse model for DFNA41. Hum Mol Genet. 2021; 30(11): 985–95.
44. Van Camp G, Snoeckx RL, Hilgert N, van den Ende J, Fukuoka H, Wagatsuma M, et al. A new autosomal recessive form of Stickler syndrome is caused by a mutation in the COL9A1 gene. Am J Hum Genet 2006; 79(3):449-57.
45. Wang L, Feng Y, Yan D, Qin L, Grati M, Mittal R, et al. A dominant variant in the PDE1C gene is associated with nonsyndromic hearing loss. Hum Genet 2018; 137(6–7): 437–46.
46. Rad A, Schade‐Mann T, Gamerdinger P, Yanus GA, Schulte B, Müller M, et al. Aberrant COL11A1 splicing causes prelingual autosomal dominant nonsyndromic hearing loss in the DFNA37 locus. Hum Mutat 2021; 42(1): 25–30.
47. Oshima A. CRYM mutations cause deafness through thyroid hormone binding properties in the fibrocytes of the cochlea. J Med Genet 2006; 43(6): e25–e25.
48. Taylor R, Bullen A, Johnson SL, Grimm-Günter E-M, Rivero F, Marcotti W, et al. Absence of plastin 1 causes abnormal maintenance of hair cell stereocilia and a moderate form of hearing loss in mice. Hum Mol Genet 2015; 24(1): 37–49.
49. Cheng J, Zhu Y, He S, Lu Y, Chen J, Han B, et al. Functional Mutation of SMAC/DIABLO, Encoding a Mitochondrial Proapoptotic Protein, Causes Human Progressive Hearing Loss DFNA64. Am J Hum Genet 2011; 89(1): 56–66.
50. Neuhaus C, Lang-Roth R, Zimmermann U, Heller R, Eisenberger T, Weikert M, et al. Extension of the clinical and molecular phenotype of DIAPH1 -associated autosomal dominant hearing loss ( DFNA1 ). Clin Genet 2017; 91(6): 892–901.
51. Zhang C, Wang M, Xiao Y, Zhang F, Zhou Y, Li J, et al. Erratum to “A Novel Nonsense Mutation of POU4F3 Gene Causes Autosomal Dominant Hearing Loss.” Neural Plast 2017; 2017: 1–1.
52. Surel C, Guillet M, Lenoir M, Bourien J, Sendin G, Joly W, Delprat B, Lesperance MM, Puel JL, Nouvian R. Remodeling of the inner hair cell microtubule meshwork in a mouse model of auditory neuropathy AUNA1. Eneuro 2016; 3(6).
53. Chen DY, Liu XF, Lin XJ, Zhang D, Chai YC, Yu DH, et al. A dominant variant in DMXL2 is linked to nonsyndromic hearing loss. Genet Med 2017; 19(5): 553–8.
54. Nakano Y, Kelly MC, Rehman AU, Boger ET, Morell RJ, Kelley MW, et al. Defects in the Alternative Splicing-Dependent Regulation of REST Cause Deafness. Cell 2018; 174(3): 536-548.e21.
55. Liu F, Hu J, Xia W, Hao L, Ma J, Ma D, et al. Exome Sequencing Identifies a Mutation in EYA4 as a Novel Cause of Autosomal Dominant Non-Syndromic Hearing Loss. PLoS One 2015; 10(5): e0126602.
56. Zheng W, Huang L, Wei Z-B, Silvius D, Tang B, Xu P-X. The role of Six1 in mammalian auditory system development. Development 2003; 130(17): 3989–4000.
57. Diaz-Horta O, Abad C, Cengiz FB, Bademci G, Blackwelder P, Walz K, et al. Ripor2 is involved in auditory hair cell stereociliary bundle structure and orientation. J Mol Med 2018; 96(11): 1227–38.
58. Ruel J, Emery S, Nouvian R, Bersot T, Amilhon B, Van Rybroek JM, et al. Impairment of SLC17A8 Encoding Vesicular Glutamate Transporter-3, VGLUT3, Underlies Nonsyndromic Deafness DFNA25 and Inner Hair Cell Dysfunction in Null Mice. Am J Hum Genet 2008; 83(2): 278–92.
59. Bademci G, Abad C, Incesulu A, Elian F, Reyahi A, Diaz-Horta O, et al. FOXF2 is required for cochlear development in humans and mice. Hum Mol Genet 2019; 28(8):1286–97.
60. Yousaf R, Ahmed ZM, Giese APJ, Morell RJ, Lagziel A, Dabdoub A, et al. Modifier variant of METTL13 suppresses human GAB1–associated profound deafness. J Clin Invest 2018; 128(4): 1509–22.
61. Lopez-Bigas N. Connexin 31 (GJB3) is expressed in the peripheral and auditory nerves and causes neuropathy and hearing impairment. Hum Mol Genet 2001; 10(9): 947–52.
62. Chen J, Ingham N, Kelly J, Jadeja S, Goulding D, Pass J, et al. Spinster Homolog 2 (Spns2) Deficiency Causes Early Onset Progressive Hearing Loss. Avraham KB, editor. PLoS Genet 2014; 10(10): e1004688.
63. Li C, Bademci G, Subasioglu A, Diaz-Horta O, Zhu Y, Liu J, et al. Dysfunction of GRAP , encoding the GRB2-related adaptor protein, is linked to sensorineural hearing loss. Proc Natl Acad Sci 2019; 116(4): 1347–52.
64. Han Y, Mu Y, Li X, Xu P, Tong J, Liu Z, et al. Grhl2 deficiency impairs otic development and hearing ability in a zebrafish model of the progressive dominant hearing loss DFNA28. Hum Mol Genet 2011; 20(16): 3213–26.
65. Avenarius MR, Jung J, Askew C, Jones SM, Hunker KL, Azaiez H, et al. Grxcr2 is required for stereocilia morphogenesis in the cochlea. PLoS One 2018; 13(8): e0201713.
66. Walsh T, Pierce SB, Lenz DR, Brownstein Z, Dagan-Rosenfeld O, Shahin H, et al. Genomic Duplication and Overexpression of TJP2/ZO-2 Leads to Altered Expression of Apoptosis Genes in Progressive Nonsyndromic Hearing Loss DFNA51. Am J Hum Genet 2010; 87(1): 101–9.
67. de Beeck KO, Van Camp G, Thys S, Cools N, Callebaut I, Vrijens K, et al. The DFNA5 gene, responsible for hearing loss and involved in cancer, encodes a novel apoptosis-inducing protein. Eur J Hum Genet 2011; 19(9):965–73.
68. Azaiez H, Decker AR, Booth KT, Simpson AC, Shearer AE, Huygen PLM, et al. HOMER2, a Stereociliary Scaffolding Protein, Is Essential for Normal Hearing in Humans and Mice. Avraham KB, editor. PLOS Genet 2015; 11(3): e1005137.
69. Gao X, Yuan YY, Lin QF, Xu JC, Wang WQ, Qiao YH, et al. Mutation of IFNLR1 , an interferon lambda receptor 1, is associated with autosomal-dominant non-syndromic hearing loss. J Med Genet 2018; 55(5): 298–306.
70. Li J, Akil O, Rouse SL, McLaughlin CW, Matthews IR, Lustig LR, et al. Deletion of Tmtc4 activates the unfolded protein response and causes postnatal hearing loss. J Clin Invest 2018; 128(11): 5150–62.
71. Wang Y, Zhou JB, Zeng QY, Wu S, Xue MQ, Fang P, et al. Hearing impairment-associated KARS mutations lead to defects in aminoacylation of both cytoplasmic and mitochondrial tRNALys. Sci China Life Sci 2020; 63(8): 1227–39.
72. Xia W, Hu J, Ma J, Huang J, Jing T, Deng L, et al. Mutations in TOP 2B cause autosomal‐dominant hereditary hearing loss via inhibition of the PI 3K‐Akt signalling pathway. FEBS Lett 2019; 593(15): 2008–18.
73. Rim JH, Choi JY, Jung J, Gee HY. Activation of KCNQ4 as a Therapeutic Strategy to Treat Hearing Loss. Int J Mol Sci 2021; 22(5): 2510.
74. De Sousa PC, Gamboa I, Duarte D, Trigueiros-Cunha N. TNC Gene Mutation: A Rare Cause for Early-Onset Sensorineural Hearing Loss. Online J Otolaryngology 2018; 8(2).
75. Zazo Seco C, Serrão de Castro L, van Nierop JW, Morín M, Jhangiani S, Verver EJJ, et al. Allelic Mutations of KITLG, Encoding KIT Ligand, Cause Asymmetric and Unilateral Hearing Loss and Waardenburg Syndrome Type 2. Am J Hum Genet 2015; 97(5): 647–60.
76. Wesdorp M, de Koning Gans PAM, Schraders M, Oostrik J, Huynen MA, Venselaar H, et al. Heterozygous missense variants of LMX1A lead to nonsyndromic hearing impairment and vestibular dysfunction. Hum Genet 2018; 137(5): 389–400.
77. Xia W, Hu J, Ma J, Huang J, Wang X, Jiang N, et al. Novel TRRAP mutation causes autosomal dominant non‐syndromic hearing loss. Clin Genet 2019; 96(4): 300–8.
78. Delmaghani S, Aghaie A, Michalski N, Bonnet C, Weil D, Petit C. Defect in the gene encoding the EAR/EPTP domain-containing protein TSPEAR causes DFNB98 profound deafness. Hum Mol Genet 2012; 21(17): 3835–44.
79. Xia W, Hu J, Liu F, Ma J, Sun S, Zhang J, et al. New role of LRP5, associated with nonsyndromic autosomal-recessive hereditary hearing loss. Hum Mutat 2017; 38(10): 1421–31.
80. Weil D. Usher syndrome type I G (USH1G) is caused by mutations in the gene encoding SANS, a protein that associates with the USH1C protein, harmonin. Hum Mol Genet 2003; 12(5): 463–71.
81. Mašindová I, Šoltýsová A, Varga L, Mátyás P, Ficek A, Hučková M, et al. MARVELD2 (DFNB49) Mutations in the Hearing Impaired Central European Roma Population - Prevalence, Clinical Impact and the Common Origin. Sharon D, editor. PLoS One 2015; 10(4): e0124232.
82. Kari E, Schrauwen I, Llaci L, Fisher LM, Go JL, Naymik M, et al. Compound heterozygous mutations in MASP1 in a deaf child with absent cochlear nerves. Neurol Genet 2017; 3(3): e153.
83. Buniello A, Ingham NJ, Lewis MA, Huma AC, Martinez‐Vega R, Varela‐Nieto I, et al. Wbp2 is required for normal glutamatergic synapses in the cochlea and is crucial for hearing. EMBO Mol Med 2016; 8(3): 191–207.
84. Gao J, Wang Q, Dong C, Chen S, Qi Y, Liu Y. Whole Exome Sequencing Identified MCM2 as a Novel Causative Gene for Autosomal Dominant Nonsyndromic Deafness in a Chinese Family. Bandapalli OR, editor. PLoS One 2015; 10(7): e0133522.
85. Cryns K, Thys S, Van Laer L, Oka Y, Pfister M, Van Nassauw L, et al. The WFS1 gene, responsible for low frequency sensorineural hearing loss and Wolfram syndrome, is expressed in a variety of inner ear cells. Histochem. Cell Biol 2003; 119(3): 247–56.
86. Vona B, Mazaheri N, Lin SJ, Dunbar LA, Maroofian R, Azaiez H, et al. A biallelic variant in CLRN2 causes non-syndromic hearing loss in humans. Hum Genet 2021;140(6): 915–31.
87. Babanejad M, Beheshtian M, Jamshidi F, Mohseni M, Booth KT, Kahrizi K, et al. Genetic etiology of hearing loss in Iran. Hum Genet 2022; 141(3–4):623–31.
88. Ghasemnejad T, Shekari Khaniani M, Zarei F, Farbodnia M, Mansoori Derakhshan S. An update of common autosomal recessive non-syndromic hearing loss genes in Iranian population. Int J Pediatr Otorhinolaryngol 2017; 97: 113–26.
89. Stefl S, Nishi H, Petukh M, Panchenko AR, Alexov E. Molecular Mechanisms of Disease-Causing Missense Mutations. J Mol Biol 2013; 425(21): 3919–36.
90. Abbaspour Rodbaneh E, Panahi M, Rahimi B, Mokabber H, Farajollahi R, Davarnia B. GJB2 mutations in Iranian Azeri population with autosomal recessive nonsyndromic hearing loss (ARNSHL): First report of c.238 C>A mutation in Iran. J Clin Lab Anal 2021; 35(11): 1–9.
91. Koohiyan M, Hashemzadeh-Chaleshtori M, Salehi M, Abtahi H, Reiisi S, Pourreza MR, et al. GJB2 mutations causing autosomal recessive non-syndromic hearing loss (ARNSHL) in two Iranian populations: Report of two novel variants. Int J Pediatr Otorhinolaryngol 2018; 107: 121–6.
92. koohiyan M, Ahmadi A, Koohian F, Aghaei S, Amiri B, Hashemzadeh-Chaleshtori M. An update of spectrum and frequency of GJB2 mutations causing hearing loss in the south of Iran: A literature review. Int J Pediatr Otorhinolaryngol 2019; 119: 136–40.
93. Azadegan-Dehkordi F, Ahmadi R, Bahrami T, Yazdanpanahi N, Farrokhi E, Tabatabaiefar MA, et al. A novel variant of SLC26A4 and first report of the c.716T>A variant in Iranian pedigrees with non-syndromic sensorineural hearing loss. Am J Otolaryngol 2018; 39(6): 719–25.
94. Sloan-Heggen CM, Babanejad M, Beheshtian M, Simpson AC, Booth KT, Ardalani F, et al. Characterising the spectrum of autosomal recessive hereditary hearing loss in Iran. J Med Genet 2015; 52(12): 823–9.
95. Bazazzadegan N, Vazehan R, Fadaee M, Fattahi Z, Abolhassani A, Parsimehr E, et al. Brief Report of Variants Detected in Hereditary Hearing Loss Cases in Iran over a 3-Year Period. Iran J Public Health 2020; 48(10): 1910–5.
96. Mehregan H, Mohseni M, Jalalvand K, Arzhangi S, Nikzat N, Banihashemi S, et al. Novel mutations in MYTH4-FERM domains of myosin 15 are associated with autosomal recessive nonsyndromic hearing loss. Int J Pediatr Otorhinolaryngol 2019; 117: 115–26.
97. Sarmadi A, Nasrniya S, Narrei S, Nouri Z, Abtahi H, Tabatabaiefar MA. Whole exome sequencing identifies novel compound heterozygous pathogenic variants in the MYO15A gene leading to autosomal recessive non-syndromic hearing loss. Mol Biol Rep 2020; 47(7): 5355–64.
98. Khatami S, Askari M, Bahreini F, Hashemzadeh-Chaleshtori M, Hematian S, Asgharzade S. Novel MYO15A variants are associated with hearing loss in the two Iranian pedigrees. BMC Med Genet 2020; 21(1): 226.
99. Shearer AE, Hildebrand MS, Webster JA, Kahrizi K, Meyer NC, Jalalvand K, et al. Mutations in the first MyTH4 domain of MYO15A are a common cause of DFNB3 hearing loss. Laryngoscope 2009; 119(4): 727–33.
100. Akbariazar E, Vahabi A, Abdi Rad I. Report of a Novel Splicing Mutation in the MYO15A Gene in a Patient With Sensorineural Hearing Loss and Spectrum of the MYO15A Mutations. Clin Med Insights Case Reports 2019; 12: 117954761987190.
101. Kannan-Sundhari A, Yan D, Saeidi K, Sahebalzamani A, Blanton SH, Liu XZ. Screening Consanguineous Families for Hearing Loss Using the MiamiOtoGenes Panel. Genet Test Mol Biomarkers 2020; 24(10): 674–80.
102. Bitarafan F, Seyedena SY, Mahmoudi M, Garshasbi M. Identification of novel variants in Iranian consanguineous pedigrees with nonsyndromic hearing loss by next‐generation sequencing. J Clin Lab Anal 2020; 34(12): 1–12.
103. Hildebrand M, Thorne N, Bromhead C, Kahrizi K, Webster J, Fattahi Z, et al. Variable hearing impairment in a DFNB2 family with a novel MYO7A missense mutation. Clin Genet 2010; 77(6): 563–71.
104. Razmara E, Bitarafan F, Esmaeilzadeh-Gharehdaghi E, Almadani N, Garshasbi M. The first case of NSHL by direct impression on EYA1 gene and identification of one novel mutation in MYO7A in the Iranian families. Iran J Basic Med Sci 2018; 21(3): 333.
105. Shang H, Yan D, Tayebi N, Saeidi K, Sahebalzamani A, Feng Y, et al. Targeted Next-Generation Sequencing of a Deafness Gene Panel (MiamiOtoGenes) Analysis in Families Unsuitable for Linkage Analysis. Biomed Res Int 2018; 2018: 1–7.
106. Mohseni M, Babanejad M, Booth KT, Jamali P, Jalalvand K, Davarnia B, et al. Exome sequencing utility in defining the genetic landscape of hearing loss and novel‐gene discovery in Iran. Clin Genet 2021; 100(1): 59–78.
107. Kooshavar D, Razipour M, Movasat M, Keramatipour M. Targeted next generation sequencing identified a novel mutation in MYO7A causing Usher syndrome type 1 in an Iranian consanguineous pedigree. Int J Pediatr Otorhinolaryngol 2018; 104(October 2017): 10–3.
108. Asgharzade S, Reiisi S, Tabatabaiefar MA, Chaleshtori MH. Screening of Myo7A mutations in Iranian patients with autosomal recessive hearing loss from west of Iran. Iran J Public Health 2017; 46(1): 76.
109. Alimardani M, Hosseini SM, Khaniani MS, Haghi MR, Eslahi A, Farjami M, et al. Targeted Mutation Analysis of the SLC26A4, MYO6, PJVK and CDH23 Genes in Iranian Patients with AR Nonsyndromic Hearing Loss. Fetal Pediatr Pathol 2019; 38(2): 93–102.
110. Koohiyan M, Hashemzadeh-Chaleshtori M, Salehi M, Abtahi H, Noori-Daloii MR, Tabatabaiefar MA. A Novel Cadherin 23 Variant for Hereditary Hearing Loss Reveals Additional Support for a DFNB12 Nonsyndromic Phenotype of CDH23. Audiol Neurotol 2020; 25(5): 258–62.
111. ] Torkamandi S, Bayat S, Mirfakhraie R, Rezaei S, Askari M, Piltan S, et al. Targeted sequencing of CDH23 and GJB2 genes in an Iranian pedigree with Usher syndrome and non-syndromic hearing loss. Gene Reports 2021; 23: 101149.
112. Zardadi S, Razmara E, Asgaritarghi G, Jafarinia E, Bitarafan F, Rayat S, et al. Novel homozygous variants in the TMC1 and CDH23 genes cause autosomal recessive nonsyndromic hearing loss. Mol Genet Genomic Med 2020; 8(12): 1–16.
113. Sadeghian L, Tabatabaiefar MA, Fattahi N, Pourreza MR, Tahmasebi P, Alavi Z, et al. Next-generation sequencing reveals a novel pathological mutation in the TMC1 gene causing autosomal recessive non-syndromic hearing loss in an Iranian kindred. Int J Pediatr Otorhinolaryngol 2019; 124: 99–105.
114. Davoudi-Dehaghani E, Fallah MS, Tavakkoly-Bazzaz J, Bagherian H, Zeinali S. Allelic heterogeneity among Iranian DFNB7/11 families: report of a new Iranian deaf family with TMC1 mutation identified by next-generation sequencing. Acta Otolaryngol 2015; 135(2): 125–9.
115. Mohammadi-Asl J, Saki N, Karimi M, Ghanbari Mardasi F. Identification of a Novel Frameshift Mutation in the TECTA Gene in an Iranian Family With Autosomal Nonsyndromic Hearing Loss. Acta Med Iran 2021; 59(3): 177-181. [116] Fardaei M, Sarrafzadeh S, Ghafouri-Fard S, Miryounesi M. Autosomal Recessive Nonsyndromic Hearing Loss: A Case Report with a Mutation in TRIOBP Gene. Int J Mol Cell Med 2015; 4(4): 245–7.
116. Rajabi S, Dastmalchi R, Dehghan MH, Eftekharian A, Aghazadeh E, Ghaderian SM. TJP2 Gene Mutation c. G1012A May Responsible for Congenital Hearing Loss with Incomplete Penetrance in An Iranian Pedigree. J Genet Resour 2019; 5(2): 143-8.
117. Talebi F, Mardasi FG, Asl JM, Tizno S, Zadeh MN. Identification of Novel PTPRQ and MYO1A Mutations in An Iranian Pedigree with Autosomal Recessive Hearing Loss. Cell J 2018; 20(1): 127–31.
118. Malamiri RA, Asl JM, Ghanbari F. Identification of a novel stop loss mutation in p2rx2 gene in an iranian family with autosomal nonsyndromic hearing loss. Iran Biomed J 2021; 25(5): 368–73.
119. Hosseini Bereshneh A, Rezaei Z, Jafarinia E, Rajabi F, Ashrafi MR, Tavasoli AR, et al. Crystallographic modeling of the PNPT1:c.1453A>G variant as a cause of mitochondrial dysfunction and autosomal recessive deafness; expanding the neuroimaging and clinical features. Mitochondrion 2021; 59: 1–7.
120. Booth KT, Kahrizi K, Najmabadi H, Azaiez H, Smith RJH. Old gene, new phenotype: splice-altering variants in CEACAM16 cause recessive non-syndromic hearing impairment. J Med Genet 2018; 55(8): 555–60.
121. Doll J, Kolb S, Schnapp L, Rad A, Rüschendorf F, Khan I, et al. Novel Loss-of-Function Variants in CDC14A are Associated with Recessive Sensorineural Hearing Loss in Iranian and Pakistani Patients. Int J Mol Sci 2020; 21(1): 311.
122. Booth KT, Azaiez H, Kahrizi K, Wang D, Zhang Y, Frees K, et al. Exonic mutations and exon skipping: Lessons learned from DFNA5. Hum Mutat 2018; 39(3): 433–40.
123. Vona B, Rad A, Reisinger E. The Many Faces of DFNB9: Relating OTOF Variants to Hearing Impairment. Genes (Basel). 2020; 11(12): 1411.
124. Talebi F, Mardasi FG, Asl JM, Sayahi M. Next-generation sequencing identifies three novel missense variants in ILDR1 and MYO6 genes in an Iranian family with hearing loss with review of the literature. Int J Pediatr Otorhinolaryngol 2017; 103: 103–8.
125. Thorpe RK, Smith RJH. Future directions for screening and treatment in congenital hearing loss. Precis Clin Med 2020; 3(3): 175–86.
126. Leake PA, Akil O, Lang H. Neurotrophin gene therapy to promote survival of spiral ganglion neurons after deafness. Hear Res 2020; 394: 107955.

XML   Persian Abstract   Print

Creative Commons License
This open access journal is licensed under a Creative Commons Attribution-NonCommercial ۴.۰ International License. CC BY-NC ۴. Design and publishing by Kashan University of Medical Sciences.
Copyright ۲۰۲۳© Feyz Medical Sciences Journal. All rights reserved.
Volume 26, Issue 6 (Bimonthly 2022) Back to browse issues page