:: Volume 24, Issue 4 (Bimonthly 2020) ::
Feyz 2020, 24(4): 374-386 Back to browse issues page
Effects of moderate-intensity exercise with Momordica charantia L. consumption on serum reverse cholesterol transport elements and lipid profile in men with type 2 diabetes
Mehdi Amini , Ahmad Abdi , Asieh Abbassi-Daloii
Department of Exercise Physiology, Ayatollah Amoli Branch, Islamic Azad University, Amol, I.R. Iran. , a.abdi58@gmail.com
Abstract:   (1479 Views)
Background: Epidemiological data indicate that defects of the reverse cholesterol transport (RCT) causes cardiovascular disease in patients with type 2 diabetes. This study aimed to examine the effects of moderate-intensity exercise with Momordica charantia L. consumption on serum reverse cholesterol transport elements and lipid profile in men with Type 2 diabetes.
Materials and Methods: In this clinical trial study, 36 men with type 2 diabetes were selected from Lolagar hospital, Tehran and were randomly divided into four groups (Control, Momordica charantia, Training and Momordica charantia+Training). The training groups participated in a progressive aerobic training for eight weeks, three sessions a week (40% to 70% of the reserved heart rate and for 15 to 45 min). The groups of Control-Momordica charantia and Momordica charantia+Training were provided 2000 mg of Momordica charantia for eight weeks (Twice a day before breakfast and dinner).
Results: The results showed that the Apo-A1, Apo-E, pon-1 and HDL-c in experimental groups had a significant increase compared to the control group (Respectively P=0.000, P=0.001, P=0.000 and P=0.000). Also, LDL-c, TG and TC decrease significantly in the experimental group compared to the control group. (Respectively P=0.001, P=0.001 and P=0.000). Apo-A1, Apo-E and PON-1 levels were significantly increased in Momordica charantia+Training group compared to Training and Momordica charantia groups (P≤0.05).
Conclusions: Aerobic training and Momordica charantia consumption can reduce cardiovascular disease in T2DM patients by affecting RCT factors. Therefore, it is recommended to use a combination of training and Momordica charantia consumption to prevent and treat T2DM.
Keywords: Exercise, Momordica charantia, Reverse cholesterol transport, Diabetes mellitus
Full-Text [PDF 1135 kb]   (747 Downloads)    
Type of Study: Research | Subject: General
Received: 2020/02/29 | Revised: 2020/11/7 | Accepted: 2020/08/17 | Published: 2020/10/10
References
1. Atlas D. International Diabetes Federation. IDF Diabetes Atlas, 7th ed. Brussels, Belgium: International Diabetes Federation, 2015.
2. Association AD. Diagnosis and classification of diabetes mellitus. Diabetes Care 2014; 37 (1): 81-0.
3. Simó R, Hernández C. Treatment of diabetes mellitus: General goals and clinical practice management. Rev Esp Cardiol 2002; 55(8): 845-60.
4. Soedamah-Muthu SS, Fuller JH, Mulnier HE, Raleigh VS, Lawrenson RA, Colhoun HM. High risk of cardiovascular disease in patients with type 1 diabetes in the UK: a cohort study using the general practice research database. Diabetes Care 2006; 29(4): 798-04.
5. Rahmati-Ahmadabad S, Broom DR, Ghanbari-Niaki A, Shirvani H. Effects of exercise on reverse cholesterol transport: A systemized narrative review of animal studies. Life Sci 2019; 224: 139-48.
6. Phillips MC. Molecular mechanisms of cellular cholesterol efflux. J Biol Chem 2014; 289(35):24020-9.
7. Ikhlef S, Berrougui H, Simo OK, Zerif E, Khalil A. Human paraoxonase 1 overexpression in mice stimulates HDL cholesterol efflux and reverse cholesterol transport. PLoS One 2017; 12(3): e0173385.
8. Shen J, Tong X, Sud N, Khound R, Song Y, Maldonado-Gomez MX, et al. Low-density lipoprotein receptor signaling mediates the triglyceride-lowering action of Akkermansia muciniphila in genetic-induced hyperlipidemia. Arterioscler Thromb Vasc Biol 2016; 36(7): 1448-56.
9. Schnohr P, O’Keefe JH, Marott JL, Lange P, Jensen GB. Dose of jogging and long-term mortality: the Copenhagen City Heart Study. J Am Coll Cardiol 2015; 65(5): 411-9.
10. Stolinski M, Alam S, Jackson NC, Shojaee-Moradie F, Pentecost C, Jefferson W, et al. Effect of 6-month supervised exercise on low-density lipoprotein apolipoprotein B kinetics in patients with type 2 diabetes mellitus. Metabolism 2008; 57(11):1608-14.
11. Abdi A. The effect of aerobic training with coriander seed extract on lipoprotein A-1, Lipid Profile and Insulin Resistance in streptozotocin-induced diabetic rats. cmja 2017; 7 (3): 1989-00. [in Persian]
12. Imamura H, Nagata A, Oshikata R, Yoshimura Y, Miyamoto N, Miyahara K, et al. High-density lipoprotein cholesterol subfractions and lecithin: cholesterol acyltransferase activity in collegiate soccer players. Int J Sports Med 2013; 34(5):398-01.
13. Søndergaard E, Poulsen MK, Jensen MD, Nielsen S. Acute changes in lipoprotein subclasses during exercise. Metabolism 2014; 63(1): 61-8.
14. Yin R, Lee N, Hirpara H, Phung O. The effect of bitter melon (Mormordica charantia) in patients with diabetes mellitus: a systematic review and meta-analysis. Nutr Diabetes. 2014; 4(12): e145.
15. Joseph B, Jini D. Antidiabetic effects of Momordica charantia (bitter melon) and its medicinal potency. Asian Pac J Trop Dis 2013; 3(2): 93–2.
16. Chaturvedi P. Role of Momordica charantia in maintaining the normal levels of lipids and glucose in diabetic rats fed a high-fat and low-carbohydrate diet. Br J Biomed Sci 2005; 62(3):124-26.
17. Senanayake GV, Maruyama M, Shibuya K, Sakono M, Fukuda N, Morishita T, et al. The effects of bitter melon (Momordica charantia) on serum and liver triglyceride levels in rats. JJ Ethnopharmacol 2004; 91(2-3): 257-62.
18. Saad DY, Soliman MM, Baiomy AA, Yassin MH, El-Sawy HB. Effects of Karela (Bitter Melon; Momordica charantia) on genes of lipids and carbohydrates metabolism in experimental hypercholesterolemia: biochemical, molecular and histopathological study. BMC Complement Altern Med 2017; 17(1): 319.
19. Association AD. Standards of medical care in diabetes-2014. Diabetes Care 2014; 37(Supplement 1): S14-S80.
20. Cortez-Navarrete M, Martínez-Abundis E, Pérez-Rubio KG, González-Ortiz M, Villar MM-d. Momordica charantia Administration Improves Insulin Secretion in Type 2 Diabetes Mellitus. J Med Food 2018; 21(7):672-77.
21. Azarbayjani MA, Abedi B. Comparison of Aerobic, Resistance and Concurrent Exercise on Lipid Profiles and Adiponectin in Sedentary Men. IJKL 2012; 7(1): 32-8. [in Persian]
22. Abdi A, Abbassi Daloee A, Salehpour M, Fatemi SR, Imantalab S. The effect of aerobic training with pomegranate juice plasma apolipoproteins in women with type 2 diabetes. J Physiol Exercise Ph 2016; 9(2): 1425-34. [in Persian]
23. Tofighi A, Rahmani F, Qarakhanlou BJ, Babaei S. The effect of regular aerobic exercise on reverse cholesterol transport A1 and apo lipoprotein aI gene expression in inactive women. Iran Red Crescent Med J 2015; 17(4): e26321.
24. Ghorbanian B, Ravassi A, Kordi MR, Hedayati M. The effects of rope training on lymphocyte ABCA1 expression, plasma ApoA-I and HDL-c in boy adolescents. Int J Endocrinol Metab 2013; 11(2): 76-1.
25. Klein I, Sarkadi B, Váradi A. An inventory of the human ABC proteins. Biochim Biophys Acta 1999; 1461(2): 237-62.
26. Kraus WE, Houmard JA, Duscha BD, Knetzger KJ, Wharton MB, McCartney JS, et al. Effects of the amount and intensity of exercise on plasma lipoproteins. N Engl J Med 2002; 347(19): 1483-92.
27. Chapman MJ, Le Goff W, Guerin M, Kontush A. Cholesteryl ester transfer protein: at the heart of the action of lipid-modulating therapy with statins, fibrates, niacin, and cholesteryl ester transfer protein inhibitors. Eur Heart J 2010; 31(2): 149-64.
28. Leaf DA. The effect of physical exercise on reverse cholesterol transport. Metabolism 2003; 52(8):950-7.
29. Rader DJ. Molecular regulation of HDL metabolism and function: implications for novel therapies. J Clin Invest 2006; 116(12): 3090-100.
30. Cavelier C, Lorenzi I, Rohrer L, von Eckardstein A. Lipid efflux by the ATP-binding cassette transporters ABCA1 and ABCG1. Biochim Biophys Acta 2006; 1761(7): 655-66.
31. Gupta AK, Ross EA, Myers JN, Kashyap ML. Increased reverse cholesterol transport in athletes. Metabolism 1993; 42(6): 684-90.
32. Oscai LB, Caruso RA, Wergeles A. Lipoprotein lipase hydrolyzes endogenous triacylglycerols in muscle of exercised rats. J Appl Physiol Respir Environ Exerc Physiol 1982; 52(4): 1059-63.
33. Butcher LR, Thomas A, Backx K, Roberts A, Webb R, Morris K. Low-intensity exercise exerts beneficial effects on plasma lipids via PPARγ. Med Sci Sports Exerc 2008; 40(7): 1263-70.
34. Azizi F, Emami H, Salehi P, Ghanbarian A, Mirmiran P, Mirbolooki M, et al. Cardiovascular risk factors in the elderly: the Tehran Lipid and Glucose Study. J Cardiovasc Risk 2003; 10(1): 65-73.
35. Eichner JE, Dunn ST, Perveen G, Thompson DM, Stewart KE, Stroehla BC. Apolipoprotein E polymorphism and cardiovascular disease: a HuGE review. Am J Epidemiol 2002; 155(6): 487-95.
36. Sarlak Z, Moazami M, Attaezade Hosseini S, Gharakhanloo R. The Effect of Eight Weeks of Aerobic Training on Some Factors Involved in Cholesterol Metabolism in the Hippocampus and Its Role in Improving the Cognitive Function of Male Wistar Rats. Sport Physiol 2020; 12(45): 17-34. [in Persian]
37. Sandoval-Hernandez AG, Buitrago L, Moreno H, Cardona-Gómez GP, Arboleda G. Role of liver X receptor in AD pathophysiology. PLoS One 2015; 10(12): e0145467.
38. Koldamova R, Fitz NF, Lefterov I. ATP-binding cassette transporter A1: from metabolism to neurodegeneration. Neurobiol Dis 2014; 72 )Pt A(: 13-21.
39. Marques LR, Diniz TA, Antunes BM, Rossi FE, Caperuto EC, Lira FS, et al. Reverse cholesterol transport: Molecular mechanisms and the non-medical approach to enhance HDL cholesterol. Front Physiol 2018; 256(9):1-11
40. barari A, ShirAli S, Abdi A, Abasi Daloee A. The Effect of Six Weeks Consumption of Pomegranate Juice and Aerobic Training on Paraoxonase-1 and Plasma Lipid Profile in Adult Women with Diabetes Type II. JSMJ 2016; 15(5):591-600. [in Persian]
41. Goldhammer E, Ben-Sira D, Zaid G, Biniamini Y, Maor I, Lanir A, et al. Paraoxonase activity following exercise-based cardiac rehabilitation program. J Cardiopulm Rehabil Prev 2007; 27(3): 151-4.
42. Abdollah M, Zuki A, Goh Y, Rezaeizadeh A, Noordin M. The effects of Momordica charantia on the liver in streptozotocin-induced diabetes in neonatal rats. AJOB 2010; 9(31): 5004-12.
43. Cheng HL, Huang HK, Chang CI, Tsai CP, Chou CH. A cell-based screening identifies compounds from the stem of Momordica charantia that overcome insulin resistance and activate AMP-activated protein kinase. J Agric Food Chem 2008; 56(16): 6835-43.
44. Kasbia GS, Arnason JT, Imbeault P. No effect of acute, single dose oral administration of Momordica charantia Linn, on glycemia, energy expenditure and appetite: a pilot study in non-diabetic overweight men. J Ethnopharmacol 2009; 126(1): 127-33.
45. Rahman IU, Khan RU, Rahman KU, Bashir M. Lower hypoglycemic but higher antiatherogenic effects of bitter melon than glibenclamide in type 2 diabetic patients. Nutr J 2015; 14(13): 1-7.
46. Dans AML, Villarruz MVC, Jimeno CA, Javelosa MAU, Chua J, Bautista R, et al. The effect of Momordica charantia capsule preparation on glycemic control in type 2 diabetes mellitus needs further studies. J Clin Epidemiol 2007; 60(6): 554-9.
47. Phillips EA, Sexton DW, Steverding D. Bitter melon extract inhibits proliferation of Trypanosoma brucei bloodstream forms in vitro. Exp Parasitol 2013; 133(3): 353-6.
48. Kumari S, Dash I, Behera KK. Therapeutic Effect of Momordica charantia on Blood Glucose, Lipid Profile and Oxidative Stress in Type 2 Diabetes Mellitus Patients: A Randomised Controlled Trial. J Clin Diagn Res 2018; 12(9): 21-5.
49. Huang HL, Hong YW, Wong YH, Chen YN, Chyuan JH, Huang CJ, et al. Bitter melon (Momordica charantia L.) inhibits adipocyte hypertrophy and down regulates lipogenic gene expression in adipose tissue of diet-induced obese rats. Br J Nutr 2008; 99(2): 230-9.
50. Repa J, Turley S, Lobaccaro J-M, Medina J, Li L, Lustig K, et al. Regulation of absorption and ABC1-mediated efflux of cholesterol by RXR heterodimers. Science 2000; 289(5484): 1524-9.
51. Oliver WR, Shenk JL, Snaith MR, Russell CS, Plunket KD, Bodkin NL, et al. A selective peroxisome proliferator-activated receptor δ agonist promotes reverse cholesterol transport. Proc Natl Acad Sci U S A 2001; 98(9): 5306-11.


XML   Persian Abstract   Print



Creative Commons License
This open access journal is licensed under a Creative Commons Attribution-NonCommercial ۴.۰ International License. CC BY-NC ۴. Design and publishing by Kashan University of Medical Sciences.
Copyright ۲۰۲۳© Feyz Medical Sciences Journal. All rights reserved.
Volume 24, Issue 4 (Bimonthly 2020) Back to browse issues page