1. Tripathy D, Eriksson KF, Orho-Melander M, Fredriksson J, Ahlqvist G, Groop L. Parallel manifestation of insulin resistance and beta cell decompensation is compatible with a common defect in Type 2 diabetes. Diabetologia 2004; 47(5): 782-93. 2. Fisher SJ, Kahn CR. Insulin signaling is required for insulin’s direct and indirect action on hepatic glucose production. J Clin Invest 2003; 111(4): 463-8. 3. Shimomura I, Matsuda M, Hammer RE, Bashmakov Y, Brown MS, Goldstein JL. Decreased IRS-2 and increased SREBP-1c lead to mixed insulin resistance and sensitivity in livers of lipodystrophic and ob/ob mice. Mol Cell 2000; 6(1): 77-86. 4. Kubota T, Kubota N, Kadowaki T. Imbalanced insulin actions in obesity and type 2 diabetes: key mouse models of insulin signaling pathway. Cell Metab 2017; 25(4): 797-810. 5. Kerouz NJ, Hörsch D, Pons S, Kahn CR. Differential regulation of insulin receptor substrates-1 and-2 (IRS-1 and IRS-2) and phosphatidylinositol 3-kinase isoforms in liver and muscle of the obese diabetic (ob/ob) mouse. J Clini Invest 1997; 100(12): 3164-72. 6. Aytug S, Reich D, Sapiro LE, Bernstein D, Begum N. Impaired IRS‐1/PI3‐kinase signaling in patients with HCV: a mechanism for increased prevalence of type 2 diabetes. Hepatology 2003; 38(6): 1384-92. 7. Sun Y, Liu S, Ferguson S, Wang L, Klepcyk P, Yun JS, Friedman JE. Phosphoenolpyruvate carboxykinase overexpression selectively attenuates insulin signaling and hepatic insulin sensitivity in transgenic mice. J Biol Chem 2002; 277(26): 23301-7. 8. Pauli JR, Ropelle ER, Cintra DE, Carvalho‐Filho MA, Moraes JC, De Souza CT, et al. Acute physical exercise reverses S‐nitrosation of the insulin receptor, insulin receptor substrate 1 and protein kinase B/Akt in diet‐induced obese Wistar rats. J Physio 2008; 586(2): 659-71. 9. Farias JMd. Effects of physical exercise in molecular parameters of the route of obesity and insulin signaling. BJKHP 2014; 16(5): 588-95. 10. Henriksen EJ. Invited review: Effects of acute exercise and exercise training on insulin resistance. J Appl Physio 2002; 93(2): 788-96. 11. Ropelle ER, Pauli JR, Fernandes MFA, Rocco SA, Marin RM, Morari J, et al. A central role for neuronal AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) in high-protein diet–induced weight loss. Diabetes. 2008; 57(3): 594-605. 12. Karstoft K, Winding K, Knudsen SH, James NG, Scheel MM, Olesen J, et al. Mechanisms behind the superior effects of interval vs continuous training on glycaemic control in individuals with type 2 diabetes: a randomised controlled trial. Diabetologia 2014; 57(10): 2081-93. 13. Marcinko K, Sikkema SR, Samaan MC, Kemp BE, Fullerton MD, Steinberg GR. High intensity interval training improves liver and adipose tissue insulin sensitivity. Mol Metab 2015; 4(12): 903-15. 14. Gillen J, Little J, Punthakee Z, Tarnopolsky M, Riddell M, Gibala M. Acute high‐intensity interval exercise reduces the postprandial glucose response and prevalence of hyperglycaemia in patients with type 2 diabetes. Diabetes Obes Metab 2012; 14(6): 575-7. 15. Mangiamarchi P, Caniuqueo A, Ramirez-Campillo R, Cardenas P, Morales S, Cano-Montoya J, et al. Effects of high-intensity interval training and nutritional education in patients with type 2 diabetes. Rev Med Chile 2017; 145(7): 845-53. 16. Wormgoor SG, Dalleck LC, Zinn C, Harris NK. Effects of high-intensity interval training on people living with type 2 diabetes: a narrative review. Can J Diabetes 2017; 41(5): 536-47. 17. Lee SS, Yoo JH, So YS. Effect of the low-versus high-intensity exercise training on endoplasmic reticulum stress and GLP-1 in adolescents with type 2 diabetes mellitus. J Phys. Ther Sci. 2015; 27(10): 3063-8. 18. Houmard JA, Shaw CD, Hickey MS, Tanner CJ. Effect of short-term exercise training on insulin-stimulated PI 3-kinase activity in human skeletal muscle. Am J Physiol Endocrinol Metab 199.9; 277(6): E1055-E60. 19. Bajpeyi S, Tanner CJ, Slentz CA, Duscha BD, McCartney JS, Hickner RC, et al. Effect of exercise intensity and volume on the persistence of insulin sensitivity during training cessation. J Appl Physiol 2009. 20. Khakdan S, Delfan M, Heydarpour Meymeh M, Kazerouni F, Ghaedi H, Shanaki M, et al. High-intensity interval training (HIIT) effectively enhances heart function via miR-195 dependent cardiomyopathy reduction in high-fat high-fructose diet-induced diabetic rats. Arch Physiol Biochem 2018: 1-8. 21. Leandro CG, Levada AC, Hirabara SM, Manhães-de-Castro R. A program of moderate physical training for Wistar rats based on maximal oxygen consumption. J Strength Cond Res 2007; 21(3): 751. 22. Kadoglou N, Vrabas I, Sailer N, Kapelouzou A, Fotiadis G, Noussios G, et al. Exercise ameliorates serum MMP-9 and TIMP-2 levels in patients with type 2 diabetes. Diabetes Metab 2010; 36(2): 144-51. 23. Pósa A, Szabó R, Kupai K, Baráth Z, Szalai Z, Csonka A, et al. Cardioprotective effects of voluntary exercise in a rat model: role of matrix metalloproteinase-2. Oxid Med Cell Longevity 2015; 2015.
|