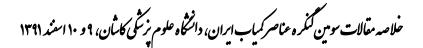
خلاصه مقالات موین گنگره عناصر کمیاب ایران، دانشگاه علوم پرسٹی کا ثان، ۹ و ۱۰ اسفند ۱۳۹۱

بررسی فرآیند جذب ${\rm Fe}/{\rm H}_2{\rm O}_2$ در حذف نیترات از آب: تعیین کینتیک و پارامترهای بهره- برداری

* بهروز کریمی ، محمد صادق رجایی

مربی، گروه مهندسی بهداشت محیط، دانشکده بهداشت، دانشگاه علوم پزشکی اراک * نویسنده مسئول: karimibehroz@yahoo.com

خلاصه:


سابقه و هدف: امروزه نگرانیهای جهانی در مورد وجود نیترات در آبهای زیرزمینی و تاثیر سوء آن بر سلامتی افزایش یافته است. این پژوهش با هدف بررسی کارآیی روش احیاء نیترات توسط فرآیند Fe/H₂O₂ و جذب روی کربن فعال صورت پذیرفت.

pH در Fe°/Fe°

نتایج: نتایج نشان داد پارامترهای بهینه در انجام فرآیند فنتون به منظور حذف نیترات به ترتیب شامل pH برابر با ۳، و زمان تماس ۱۰ سام ۱۰ سیر ۱۰ سیر تابیج: نتایج نشان داد پارامترهای بهینه در انجام فرآیند فنتون به منظور حذف نیترات pH باشد. با اعمال این شرایط راندمان حذف نیترات در زمان ماند ۹۰ دقیقه، غلظت اولیه نیترات pH بهتر تیب برابر با ۱۰/۵، ۲۷/۲، ۲۷/۵ و ۷۶ درصد می باشد. pH بهتر تیب برابر با ۱۰/۵، ۲۷/۲، ۲۷/۵ و ۷۶ درصد می باشد.

نتیجه گیری: بر اساس نتایج آزمایشگاهی به دست آمده مشخص گردید که فرآیند فنتون اصلاحی با نانو ذرات آهن صفر قادر به کاهش موثر نیترات تحت شرایط بهینه بوده و این روش می تواند برای حذف ترکیبات مشابه استفاده قرار گیرد. استفاده از ترکیبات آهن در pH پائین در حضور پراکسید هیدروژن می تواند تاثیر مطلوبی بر تجزیه نیترات داشته باشد. از این فرآیند می توان برای احیاء شیمیایی نیترات در محل آلودگی آبهای زیر زمینی استفاده کرد.

واژگان کلیدی: جذب نیترات، فرآیند اکسیداسیون پیشرفته، محیط آبی، ترکیبات آهن، احیاء نیترات

Evaluating of Nitrate removal by adsorption/Fe/H₂O₂ process from water: Kinetics and operation parameters

karimi B1*, Rajaei MS1

Department of Environmental Health Engineering, Faculty of Health, Arak University of Medical Sciences, Arak, I. R. Iran.

* Corresponding Author: karimibehroz@yahoo.com

Abstract:

Background: Today, global concerns about nitrate in groundwater and its adverse impact on health have increased. This study aimed to evaluate the efficiency of Nitrate reduction by Fe/H_2O_2 process and adsorption on the activated carbon.

Materials and Methods: In this experimental-laboratory study, Nitrate oxidation by the advanced oxidation process $Fe^{\circ}/Fe^{II}/Fe^{III}/H_2O_2$ at pH 2-10, contact time 10-90 min, Nitrate concentrations of 50-300 mg/L was considered. A spectrophotometer was used to measure Nitrate in the effluent.

Results: Results showed that the optimal parameters in the Fenton process in order to remove nitrate include: pH 3 and the contact time 15 min. By applying these conditions, the Nitrate removal efficiency in the retention time (90 min), initial nitrate concentration in 100 mg/L, iron concentration 10 mg/L and pH 4 for Fe^{III} 'Fe^{II} 'Fe^{II} 'Fe^{II}/Fe 'H₂O₂ and Fe^{III}/Fe 'H₂O₂ were 10.5%, 27.6%, 36.5%, 62.3% and 74%, respectively.

Conclusion: According to the results, it was determined that the corrective fenton process with zero iron nano-particles can effectively reduce Nitrate under optimal conditions and this method can be used for the removal of similar compounds. Moreover, it was determined that the use of iron compounds in the presence of hydrogen peroxide can have a desirable effect on the decomposition of Nitrate and this method can be used for the removal of similar compounds.

Keywords: Adsorption of Nitrate, Advanced oxidation process, Aqueous system, Iron compound, Nitrate reduction