[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Journal Information::
Indexing Sources::
Guide for Authors::
Online Submission::
Articles archive::
For Reviewers::
Contact us::
Biochemistry and Nutrition in Metabolic Diseases
Search in website

Advanced Search
Receive site information
Enter your Email in the following box to receive the site news and information.
:: Volume 27, Issue 6 (Bimonthly 2023) ::
Feyz 2023, 27(6): 590-598 Back to browse issues page
Simultaneous effects of nanocurcumin supplementation and resistance training on TERF2 gene expression and p21-p53 axis in muscle tissue of male rats
Jalal Pourjafarian , Yaser Kazemzadeh , Sajjad Arshadi , Abdolali Banaefar , Yahya Mohammadnajad Panahkandi
Department of Sports Physiology, Faculty of Physical Education, Islamic Azad University, Islamshahr Branch, Islamshahr, Iran , Yaser.kazemzadeh@yahoo.com
Abstract:   (563 Views)
Background and Aim: Apoptosis is regulated by a complex interplay of gene products that either activate or inhibit this process. This study aimed at assessing the combined impact of nanocurcumin supplementation and resistance training on TERF2 (Telomeric Repeat Binding Factor 2) gene expression and the p21-p53 axis in the muscle tissue of male rats.
Methods: In this experimental study, 24 male Wistar rats were randomly allocated into four groups: a healthy control group, a resistance training group, a nanocurcumin group, and a resistance training + nanocurcumin group. Resistance training was conducted over a 4-week period following a specific protocol. Concurrently, rats in the nanocurcumin groups received 80 mg of the supplement per kilogram of body weight. The expression levels of TERF2, p53, and p21 genes were assessed using the Real-Time PCR method.
Results: The results showed significant differences in the expression levels of TERF2, p53, and p21 genes among the four groups (P<0.05). In the resistance training + nanocurcumin group, the expression of TERF2, p53, and p21 genes was significantly higher compared to the control group (P<0.05). Additionally, p53 gene expression in the resistance training group was significantly higher than in the nanocurcumin supplement group (P<0.05). The combined resistance training and nanocurcumin supplementation did not significantly affect the expression of the TERF2 gene in the muscle tissue of male rats compared to either training or supplementation alone (P<0.05). Furthermore, the synergistic effect of resistance training and supplementation significantly increased the expression of p21 and p53 genes (P<0.05).
Conclusion: Resistance training and nanocurcumin supplementation enhance TERF2 gene expression, potentially reducing telomere shortening and aging. Moreover, the upregulation of p53 and p21 gene expression during resistance training and nanocurcumin supplementation may induce cell cycle arrest and apoptosis.
Keywords: Resistance Training, TERF2 Protein, P53 Protein, P21 Protein, Curcumin Rat
Full-Text [PDF 433 kb]   (222 Downloads)    
Type of Study: Research | Subject: General
Received: 2023/07/24 | Revised: 2024/02/19 | Accepted: 2023/12/25 | Published: 2024/02/13
1. Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol. 2007; 35(4): 495-516 doi:10.1080/01926230701320337 PMid:17562483 PMCid:PMC2117903
2. Honardoost M, Soleimanjahi H, Rajaei F. Apoptosis: programmed cell death. J Inflamm Dis. 2013; 17(3): 48-57
3. Hasima N, Aggarwal BB. Cancer-linked targets modulated by curcumin. Int J Biochem Mol Biol. 2012; 3(4): 328-51
4. Lago CU, Sung HJ, Ma W, Wang PY, Hwang PM. p53, aerobic metabolism, and cancer. Antioxid Redox Signal. 2011; 15(6): 1739-48 doi:10.1089/ars.2010.3650 PMid:20919942 PMCid:PMC3151428
5. Pasz-Walczak G, Kordek R, Faflik M. P21 (WAF1) expression in colorectal cancer: correlation with P53 and cyclin D1 expression, clinicopathological parameters and prognosis. Pathol Res Pract. 2001; 197(10): 683-9 doi:10.1078/0344-0338-00146 PMid:11700890
6. Barnard RJ, Leung PS, Aronson WJ, Cohen P, Golding LA. A mechanism to explain how regular exercise might reduce the risk for clinical prostate cancer. Eur J Cancer Prev. 2007; 16(5): 415-21 doi:10.1097/01.cej.0000243851.66985.e4 PMid:17923812
7. Wang Y, Zhao J, Yang W, Bi Y, Chi J, Tian J, et al. High-dose alcohol induces reactive oxygen species-mediated apoptosis via PKC-β/p66Shc in mouse primary cardiomyocytes. Biochem Biophys Res Commun. 2015; 456(2): 656-61 doi:10.1016/j.bbrc.2014.12.012 PMid:25499814
8. Shishodia S, Sethi G, Aggarwal BB. Curcumin: getting back to the roots. Ann New York Academy Sci. 2005; 1056: 206-17 doi:10.1196/annals.1352.010 PMid:16387689
9. Belviranlı M, Gökbel H, Okudan N, Büyükbaş S. Effects of grape seed polyphenols on oxidative damage in liver tissue of acutely and chronically exercised rats. Phytother Res. 2013; 27(5): 672-7 doi:10.1002/ptr.4772 PMid:22745005
10. Varisa P, Yon R. Anticancer Properties of Curcumin. In: Hala G-M, editor. Advances in Cancer Therapy. Rijeka: IntechOpen; 2011. p. Ch. 16.
11. Yu L, Fan Y, Ye G, Li J, Feng X, Lin K, et al. Curcumin inhibits apoptosis and brain edema induced by hypoxia-hypercapnia brain damage in rat models. Am J Med Sci. 2015; 349(6): 521-5 doi:10.1097/MAJ.0000000000000457 PMid:25867253
12. Song K, Jung D, Jung Y, Lee SG, Lee I. Interaction of human Ku70 with TRF2. FEBS Lett. 2000; 481(1): 81-5 doi:10.1016/S0014-5793(00)01958-X PMid:10984620
13. Borghini A, Giardini G, Tonacci A, Mastorci F, Mercuri A, Mrakic-Sposta S, et al. Chronic and acute effects of endurance training on telomere length. Mutagenesis. 2015; 30(5): 711-6 doi:10.1093/mutage/gev038 PMid:26001753
14. Vijayakurup V, Carmela S, Carmelo D, Corrado T, Srinivas P, Gopala S. Phenethyl caffeate benzo[kl]xanthene lignan with DNA interacting properties induces DNA damage and apoptosis in colon cancer cells. Life Sci. 2012; 91(25-26): 1336-44 doi:10.1016/j.lfs.2012.10.013 PMid:23123449
15. Banaeifar AA, Gorzi A, Hedayati M, Nabiollahi Z, Rahmani Moghaddam N, Khantan M. Effect of an 8-week resistance training program on acetylcholinesterase activity in rat muscle. Feyz Med Sci J. 2011;15(4):316-21.
16. Epstein J, Sanderson IR, Macdonald TT. Curcumin as a therapeutic agent: the evidence from in vitro, animal and human studies. Br J Nutr. 2010; 103(11): 1545-57 doi:10.1017/S0007114509993667 PMid:20100380
17. Vandesompele J, De Preter K, Pattyn F, Poppe B, Roy N, De Paepe A, et al. Accurate Normalization of Real-Time Quantitative RT-PCR Data by Geometric Averaging of Multiple Internal Control Genes. Genome Biol. 2002; 3: 00341-003411 doi:10.1186/gb-2002-3-7-research0034 PMid:12184808 PMCid:PMC126239
18. moghiseh M, Mirzayan Shanjani S, Benaifar AA, Kazemzadeh. The Effect of Aerobic Exercise Training and Consumption of Curcumin Nano Micelles on the Expression Level of CASP3, CASP9, Bax and BCL2 Genes on Cardiac Tissues of Balb/C Mice with Induced Breast Cancer Treated with Doxorubicin. Iran J Breast Dis. 2023; 16(2): 67-83 doi:10.30699/ijbd.16.2.67
19. Sadeghian S, Kazemzadeh Y, Mohammadnejadpanah Kandi Y, Mirzayan Shanjani S, Sedaghati S. The Effect of Aerobic Exercise with Curcumin Consumption on Tissue Apoptosis Indices in the Liver Tissue of Rats Induced by Breast Cancer in the Doxorubicin Treatment Phase: An Experimental Study. J Rafsanjan Univ Med Sci. 2022; 21(4): 433-48 doi:10.52547/jrums.21.4.433
20. Vita GL, Aguennouz M, Sframeli M, Sanarica F, Mantuano P, Oteri R, et al. Effect of exercise on telomere length and telomere proteins expression in mdx mice. Mol Cell Biochem. 2020; 470(1-2): 189-97 doi:10.1007/s11010-020-03761-3 PMid:32447718
21. Ziaaldini MM, Koltai E, Csende Z, Goto S, Boldogh I, Taylor AW, et al. Exercise training increases anabolic and attenuates catabolic and apoptotic processes in aged skeletal muscle of male rats. Exp Gerontol. 2015; 67: 9-14 doi:10.1016/j.exger.2015.04.008 PMid:25910622
22. Werner H, Sarfstein R, LeRoith D, Bruchim I. Insulin-like Growth Factor 1 Signaling Axis Meets p53 Genome Protection Pathways. Front Oncol. 2018; 6: 159 doi:10.3389/fonc.2016.00159, PMid:27446805 PMCid:PMC4917523
23. Zhou C, Chen Y, Wu Z, Lu W, Han J, Wu P, et al. Genome-wide analysis of the MYB gene family in physic nut (Jatropha curcas L.). Gene. 2015; 572(1): 63-71 doi:10.1016/j.gene.2015.06.072 PMid:26142104
24. Abdollahpour Y, Zolfaghari M, Ghaderi Pakdel F. The Effect of Eight Weeks of Moderate Intensity Resistance Training on Cardiac Telomerase Enzyme Content and Activity in Elderly Rats. Community Health J. 2018; 12(2): 22-9.
25. Wyatt HD, West SC, Beattie TL. InTERTpreting telomerase structure and function. Nucleic Acids Res. 2010; 38(17): 5609-22 doi:10.1093/nar/gkq370 PMid:20460453 PMCid:PMC2943602
26. Mason M, Schuller A, Skordalakes E. Telomerase structure function. Curr Opin Struct Biol. 2011; 21(1): 92-100 doi:10.1016/j.sbi.2010.11.005 PMid:21168327
27. Günes C, Rudolph KL. The role of telomeres in stem cells and cancer. Cell. 2013; 152(3): 390-3.doi:10.1016/j.cell.2013.01.010 PMid:23374336
28. Steller H. Mechanisms and genes of cellular suicide. Science (New York, NY). 1995; 267(5203): 1445-9doi:10.1126/science.7878463 PMid:7878463
29. Liu J, Zhang C, Feng Z. Tumor suppressor p53 and its gain-of-function mutants in cancer. Acta Biochim Biophys Sin (Shanghai). 2014; 46(3): 170-9 doi:10.1093/abbs/gmt144 PMid:24374774 PMCid:PMC3932832
30. Palaniappan K, Holley RA. Use of natural antimicrobials to increase antibiotic susceptibility of drug resistant bacteria. Int J Food Microbiol. 2010; 140 (2-3): 164-8 doi:10.1016/j.ijfoodmicro.2010.04.001 PMid:20457472
31. Aggarwal BB, Harikumar KB. Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. Int J Biochem Cell Biol. 2009; 41(1): 40-59 doi:10.1016/j.biocel.2008.06.010 PMid:18662800 PMCid:PMC2637808
32. Prasad KN, Wu M, Bondy SC. Telomere shortening during aging: Attenuation by antioxidants and anti-inflammatory agents. Mech Ageing Dev. 2017; 164: 61-6. doi:10.1016/j.mad.2017.04.004 PMid:28431907
33. Sadeghi Boroujerdi S, Rahimi MR. The apoptotic response to resistance exercise with different intensities in athletes. Medicina Dello Sport. 2011; 64: 31-44.
34. Siu PM, Bryner RW, Martyn JK, Alway SE. Apoptotic adaptations from exercise training in skeletal and cardiac muscles. FASEB J. 2004; 18(10): 1150-2 doi:10.1096/fj.03-1291fje PMid:15132982
35. Feizolahi F, Azarbayjani M, Nasehi M, Piri M. Comparison the Effect of Short-term Swimming Training and Curcumin Supplementation on Damaged Spatial Memory after Binge Ethanol Drinking in Male Rats: Preliminary Report. J Med Plants. 2017; 16(61): 174-84.
36. Baghaiee B, Karimi P, Siahkouhian M, Pescatello LS. Moderate aerobic exercise training decreases middle-aged induced pathologic cardiac hypertrophy by improving Klotho expression, MAPK signaling pathway, and oxidative stress status in Wistar rats. Iran J Basic Med Sci. 2018; 21(9): 911-9.
Send email to the article author

Add your comments about this article
Your username or Email:


XML   Persian Abstract   Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Pourjafarian J, Kazemzadeh Y, Arshadi S, Banaefar A, Mohammadnajad Panahkandi Y. Simultaneous effects of nanocurcumin supplementation and resistance training on TERF2 gene expression and p21-p53 axis in muscle tissue of male rats. Feyz 2023; 27 (6) :590-598
URL: http://feyz.kaums.ac.ir/article-1-4929-en.html

Creative Commons License
This open access journal is licensed under a Creative Commons Attribution-NonCommercial ۴.۰ International License. CC BY-NC ۴. Design and publishing by Kashan University of Medical Sciences.
Copyright ۲۰۲۳© Feyz Medical Sciences Journal. All rights reserved.
Volume 27, Issue 6 (Bimonthly 2023) Back to browse issues page
مجله علوم پزشکی فیض Feyz Medical Sciences Journal
Persian site map - English site map - Created in 0.05 seconds with 45 queries by YEKTAWEB 4657